forked from coleam00/ai-agents-masterclass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
agents.py
144 lines (117 loc) · 4.44 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import asana
from asana.rest import ApiException
from openai import OpenAI
from dotenv import load_dotenv
from datetime import datetime
import json
import os
load_dotenv()
client = OpenAI()
model = os.getenv('OPENAI_MODEL', 'gpt-4o')
configuration = asana.Configuration()
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
api_client = asana.ApiClient(configuration)
tasks_api_instance = asana.TasksApi(api_client)
def create_asana_task(task_name, due_on="today"):
"""
Creates a task in Asana given the name of the task and when it is due
Example call:
create_asana_task("Test Task", "2024-06-24")
Args:
task_name (str): The name of the task in Asana
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
Returns:
str: The API response of adding the task to Asana or an error message if the API call threw an error
"""
if due_on == "today":
due_on = str(datetime.now().date())
task_body = {
"data": {
"name": task_name,
"due_on": due_on,
"projects": [os.getenv("ASANA_PROJECT_ID", "")]
}
}
try:
api_response = tasks_api_instance.create_task(task_body, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return f"Exception when calling TasksApi->create_task: {e}"
def get_tools():
tools = [
{
"type": "function",
"function": {
"name": "create_asana_task",
"description": "Creates a task in Asana given the name of the task and when it is due",
"parameters": {
"type": "object",
"properties": {
"task_name": {
"type": "string",
"description": "The name of the task in Asana"
},
"due_on": {
"type": "string",
"description": "The date the task is due in the format YYYY-MM-DD. If not given, the current day is used"
},
},
"required": ["task_name"]
},
},
}
]
return tools
def prompt_ai(messages):
# First, prompt the AI with the latest user message
completion = client.chat.completions.create(
model=model,
messages=messages,
tools=get_tools()
)
response_message = completion.choices[0].message
tool_calls = response_message.tool_calls
# Second, see if the AI decided it needs to invoke a tool
if tool_calls:
# If the AI decided to invoke a tool, invoke it
available_functions = {
"create_asana_task": create_asana_task
}
# Add the tool request to the list of messages so the AI knows later it invoked the tool
messages.append(response_message)
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(**function_args)
messages.append({
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response
})
# Call the AI again so it can produce a response with the result of calling the tool(s)
second_response = client.chat.completions.create(
model=model,
messages=messages,
)
return second_response.choices[0].message.content
return response_message.content
def main():
messages = [
{
"role": "system",
"content": f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}"
}
]
while True:
user_input = input("Chat with AI (q to quit): ").strip()
if user_input == 'q':
break
messages.append({"role": "user", "content": user_input})
ai_response = prompt_ai(messages)
print(ai_response)
messages.append({"role": "assistant", "content": ai_response})
if __name__ == "__main__":
main()