-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
122 lines (105 loc) · 4.58 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Input raw fastq files, QC, and perform trimming
configfile: "config.yaml"
import io
import os
import pandas as pd
import pathlib
from snakemake.exceptions import print_exception, WorkflowError
#----SET VARIABLES----#
PROJ = config["proj_name"]
INPUTDIR = config["raw_data"]
SCRATCH = config["scratch"]
SCRATCH_PROJ = os.path.join(SCRATCH, PROJ)
OUTPUTDIR = config["outputDIR"]
SUF = config["suffix"]
R1_SUF = str(config["r1_suf"])
R2_SUF = str(config["r2_suf"])
# Use glob statement to find all samples in 'raw_data' directory
##rm### SAMPLE_LIST,NUMS = glob_wildcards(INPUTDIR + "/{sample}_L001_{num}.fastq.gz")
## Wildcard '{num}' must be equivalent to 'R1' or '1', meaning the read pair designation.
SAMPLE_LIST,NUMS = glob_wildcards(INPUTDIR + "/{sample}_{num}" + SUF)
# Unique the output variables from glob_wildcards
SAMPLE_SET = set(SAMPLE_LIST)
SET_NUMS = set(NUMS)
ADAPTERS = config["adapters"]
#----DEFINE RULES----#
rule all:
input:
# fastqc output before trimming
html = expand("{base}/fastqc/{sample}_{num}_fastqc.html", base = SCRATCH_PROJ, sample=SAMPLE_SET, num=SET_NUMS),
zip = expand("{base}/fastqc/{sample}_{num}_fastqc.zip", base = SCRATCH_PROJ, sample=SAMPLE_SET, num=SET_NUMS),
# Trimmed data output
trimmedData = expand("{base}/trimmed/{sample}_{num}_trim.fastq.gz", base = SCRATCH_PROJ, sample=SAMPLE_SET, num=SET_NUMS),
html_trim = expand("{base}/fastqc/{sample}_{num}_trimmed_fastqc.html", base = SCRATCH_PROJ, sample=SAMPLE_SET, num=SET_NUMS),
zip_trim = expand("{base}/fastqc/{sample}_{num}_trimmed_fastqc.zip", base = SCRATCH_PROJ, sample=SAMPLE_SET, num=SET_NUMS),
orig_html = SCRATCH_PROJ + "/fastqc/raw_multiqc.html",
orig_stats = SCRATCH_PROJ + "/fastqc/raw_multiqc_general_stats.txt",
trim_html = SCRATCH_PROJ + "/fastqc/trimmed_multiqc.html",
trim_stats = SCRATCH_PROJ + "/fastqc/trimmed_multiqc_general_stats.txt"
rule fastqc:
input:
INPUTDIR + "/{sample}_{num}" + SUF
# INPUTDIR + "/{sample}_{num}.fastq.gz"
output:
html = SCRATCH_PROJ + "/fastqc/{sample}_{num}_fastqc.html",
zip = SCRATCH_PROJ + "/fastqc/{sample}_{num}_fastqc.zip"
params: ""
log:
SCRATCH_PROJ + "/logs/fastqc/{sample}_{num}.log"
wrapper:
"0.35.2/bio/fastqc"
rule trimmomatic_pe:
input:
r1 = INPUTDIR + "/{sample}_" + R1_SUF + SUF,
r2 = INPUTDIR + "/{sample}_" + R2_SUF + SUF
# r1 = INPUTDIR + "/{sample}_1.fastq.gz",
# r2 = INPUTDIR + "/{sample}_2.fastq.gz"
output:
r1 = SCRATCH_PROJ + "/trimmed/{sample}_" + R1_SUF + "_trim.fastq.gz",
r2 = SCRATCH_PROJ + "/trimmed/{sample}_" + R2_SUF + "_trim.fastq.gz",
# r1 = SCRATCH_PROJ + "/trimmed/{sample}_1_trim.fastq.gz",
# r2 = SCRATCH_PROJ + "/trimmed/{sample}_2_trim.fastq.gz",
# reads where trimming entirely removed the mate
r1_unpaired = SCRATCH_PROJ + "/trimmed/{sample}_1.unpaired.fastq.gz",
r2_unpaired = SCRATCH_PROJ + "/trimmed/{sample}_2.unpaired.fastq.gz"
log:
SCRATCH_PROJ + "/trimmed/logs/trimmomatic/{sample}.log"
params:
trimmer = ["ILLUMINACLIP:{}:2:30:7".format(ADAPTERS), "LEADING:2", "TRAILING:2", "SLIDINGWINDOW:4:2", "MINLEN:50"],
extra = ""
wrapper:
"0.35.2/bio/trimmomatic/pe"
rule fastqc_trim:
input:
SCRATCH_PROJ + "/trimmed/{sample}_{num}_trim.fastq.gz"
output:
html = SCRATCH_PROJ + "/fastqc/{sample}_{num}_trimmed_fastqc.html",
zip = SCRATCH_PROJ + "/fastqc/{sample}_{num}_trimmed_fastqc.zip"
params: ""
log:
SCRATCH_PROJ + "/logs/fastqc/{sample}_{num}_trimmed.log"
wrapper:
"0.35.2/bio/fastqc"
rule multiqc:
input:
orig = expand("{scratch}/fastqc/{sample}_{num}_fastqc.zip", scratch= SCRATCH_PROJ, sample=SAMPLE_SET, num=SET_NUMS),
trimmed = expand("{scratch}/fastqc/{sample}_{num}_trimmed_fastqc.zip", scratch= SCRATCH_PROJ, sample=SAMPLE_SET, num=SET_NUMS)
output:
orig_html = SCRATCH_PROJ + "/fastqc/raw_multiqc.html",
orig_stats = SCRATCH_PROJ + "/fastqc/raw_multiqc_general_stats.txt",
trim_html = SCRATCH_PROJ + "/fastqc/trimmed_multiqc.html",
trim_stats = SCRATCH_PROJ + "/fastqc/trimmed_multiqc_general_stats.txt"
conda:
"envs/multiqc-env.yaml"
shell:
"""
multiqc -n multiqc.html {input.orig} #run multiqc
mv multiqc.html {output.orig_html} #rename html
mv multiqc_data/multiqc_general_stats.txt {output.orig_stats} #move and rename stats
rm -rf multiqc_data #clean-up
#repeat for trimmed data
multiqc -n multiqc.html {input.trimmed} #run multiqc
mv multiqc.html {output.trim_html} #rename html
mv multiqc_data/multiqc_general_stats.txt {output.trim_stats} #move and rename stats
rm -rf multiqc_data #clean-up
"""