-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathCNN_Simple_Convolution.py
213 lines (175 loc) · 7.62 KB
/
CNN_Simple_Convolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# File: CNN_Simple_Convolution.py
# Description: Neural Networks for computer vision in autonomous vehicles and robotics
# Environment: PyCharm and Anaconda environment
#
# MIT License
# Copyright (c) 2018 Valentyn N Sichkar
# github.com/sichkar-valentyn
#
# Reference to:
# Valentyn N Sichkar. Neural Networks for computer vision in autonomous vehicles and robotics // GitHub platform. DOI: 10.5281/zenodo.1317904
# Implementing simple convolution to the GreyScaled image
# Importing needed libraries
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
# Creating an array from image data
image_GreyScale = Image.open("images/owl_greyscale.jpg")
image_np = np.array(image_GreyScale)
# Checking the type of the array
print(type(image_np)) # <class 'numpy.ndarray'>
# Checking the shape of the array
print(image_np.shape) # (1280, 830, 3)
# Showing image with every channel separately
channel_0 = image_np[:, :, 0]
channel_1 = image_np[:, :, 1]
channel_2 = image_np[:, :, 2]
# Checking if all channels are the same
print(np.array_equal(channel_0, channel_1)) # True
print(np.array_equal(channel_1, channel_2)) # True
# Creating a figure with subplots to show all channels separately
figure_0, ax = plt.subplots(nrows=2, ncols=2)
# ax is (2, 2) np array and to make it easier to read we use 'flatten' function
# Or we can call each time ax[0, 0]
ax0, ax1, ax2, ax3 = ax.flatten()
# Adjusting first subplot
ax0.imshow(channel_0, cmap=plt.get_cmap('gray'))
ax0.set_xlabel('')
ax0.set_ylabel('')
ax0.set_title('First channel')
# Adjusting second subplot
ax1.imshow(channel_1, cmap=plt.get_cmap('gray'))
ax1.set_xlabel('')
ax1.set_ylabel('')
ax1.set_title('Second channel')
# Adjusting third subplot
ax2.imshow(channel_2, cmap=plt.get_cmap('gray'))
ax2.set_xlabel('')
ax2.set_ylabel('')
ax2.set_title('Third channel')
# Adjusting fourth subplot
ax3.imshow(image_np, cmap=plt.get_cmap('gray'))
ax3.set_xlabel('')
ax3.set_ylabel('')
ax3.set_title('Original image')
# Function to make distance between figures
plt.tight_layout()
# Giving the name to the window with figure
figure_0.canvas.set_window_title('GreyScaled image with three identical channels')
# Showing the plots
plt.show()
# Preparing image for convolution
# In order to get feature map (convolved output image) in the same size, it is needed to set Hyperparameters
# Filter (kernel) size, K_size = 3
# Step for sliding (stride), Step = 1
# Processing edges (zero valued frame around image), Pad = 1
# Consequently, output image size is (width and height are the same):
# Width_Out = (Width_In - K_size + 2*Pad)/Step + 1
# Imagine, that input image is 5x5 spatial size (width and height), then output image:
# Width_Out = (5 - 3 + 2*1)/1 + 1 = 5, and this is equal to input image
# Taking as input image first channel as array
input_image = image_np[:, :, 0]
# Checking the shape
print(input_image.shape) # (1280, 830)
# Applying to the input image Pad frame with zero values
# Using NumPy method 'pad'
input_image_with_pad = np.pad(input_image, (1, 1), mode='constant', constant_values=0)
# Checking the shape
print(input_image_with_pad.shape) # (1282, 832)
# Defining so called 'identity' filter with size 3x3
# By applying this filter resulted convolved image has to be the same with input image
filter_0 = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]])
# Checking the shape
print(filter_0.shape) # (3, 3)
# Preparing zero valued output array for convolved image
# The shape is the same with input image according to the chosen Hyperparameters
output_image = np.zeros(input_image.shape)
# Implementing convolution operation
# Going through all input image with pad frame
for i in range(input_image_with_pad.shape[0] - 2):
for j in range(input_image_with_pad.shape[1] - 2):
# Extracting 3x3 patch (the same size with filter) from input image with pad frame
patch_from_input_image = input_image_with_pad[i:i+3, j:j+3]
# Applying elementwise multiplication and summation - this is convolution operation
output_image[i, j] = np.sum(patch_from_input_image * filter_0)
# Checking if output image and input image are the same
# Because of the filter with only unit in the center (identity filter), convolution operation gives the same image
print(np.array_equal(input_image, output_image)) # True
# Implementing another standard filters for edge detection
# Defining standard filters (kernel) with size 3x3 for edge detection
filter_1 = np.array([[1, 0, -1], [0, 0, 0], [-1, 0, 1]])
filter_2 = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]])
filter_3 = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
# Checking the shape
print(filter_1.shape, filter_2.shape, filter_3.shape) # (3, 3) (3, 3) (3, 3)
# In order to prevent appearing values that are more than 255
# And in general keep values for image pixels in range from 0 to 255
# The following function is defined
def values_for_image_pixels(x_array):
# Preparing resulted array
result_array = np.zeros(x_array.shape)
# Going through all elements of the given array
for i in range(x_array.shape[0]):
for j in range(x_array.shape[1]):
# Checking if the element is in range [0, 255]
if 0 <= x_array[i, j] <= 255:
result_array[i, j] = x_array[i, j]
elif x_array[i, j] < 0:
result_array[i, j] = 0
else:
result_array[i, j] = 255
# Returning edited array
return result_array
# Preparing zero valued output arrays for convolved images
# The shape is the same with input image according to the chosen Hyperparameters
output_image_1 = np.zeros(input_image.shape)
output_image_2 = np.zeros(input_image.shape)
output_image_3 = np.zeros(input_image.shape)
# Implementing convolution operation
# Going through all input image with pad frame
for i in range(input_image_with_pad.shape[0] - 2):
for j in range(input_image_with_pad.shape[1] - 2):
# Extracting 3x3 patch (the same size with filter) from input image with pad frame
patch_from_input_image = input_image_with_pad[i:i+3, j:j+3]
# Applying elementwise multiplication and summation - this is convolution operation
# With filter_1
output_image_1[i, j] = np.sum(patch_from_input_image * filter_1)
# With filter_2
output_image_2[i, j] = np.sum(patch_from_input_image * filter_2)
# With filter_3
output_image_3[i, j] = np.sum(patch_from_input_image * filter_3)
# Applying function to get rid of negative values and values that are more than 255
output_image_1 = values_for_image_pixels(output_image_1)
output_image_2 = values_for_image_pixels(output_image_2)
output_image_3 = values_for_image_pixels(output_image_3)
# Showing results on the appropriate figures
figure_1, ax = plt.subplots(nrows=2, ncols=2)
# ax is (2, 2) np array and to make it easier to read we use 'flatten' function
# Or we can call each time ax[0, 0]
ax0, ax1, ax2, ax3 = ax.flatten()
# Adjusting first subplot
ax0.imshow(output_image_1, cmap=plt.get_cmap('gray'))
ax0.set_xlabel('')
ax0.set_ylabel('')
ax0.set_title('Filter #1')
# Adjusting second subplot
ax1.imshow(output_image_2, cmap=plt.get_cmap('gray'))
ax1.set_xlabel('')
ax1.set_ylabel('')
ax1.set_title('Filter #2')
# Adjusting third subplot
ax2.imshow(output_image_3, cmap=plt.get_cmap('gray'))
ax2.set_xlabel('')
ax2.set_ylabel('')
ax2.set_title('Filter #3')
# Adjusting fourth subplot
ax3.imshow(input_image, cmap=plt.get_cmap('gray'))
ax3.set_xlabel('')
ax3.set_ylabel('')
ax3.set_title('Original image')
# Function to make distance between figures
plt.tight_layout()
# Giving the name to the window with figure
figure_1.canvas.set_window_title('Convolution with filters for edge detection')
# Showing the plots
plt.show()