-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFastCMeans.py
90 lines (68 loc) · 2.33 KB
/
FastCMeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Segment N-dimensional grayscale image into c classes using a memory
# efficient implementation of the c-means (aka k-means) clustering
# algorithm. The computational efficiency is achieved by using the
# histogram of the image intensities during the clustering process instead
# of the raw image data.
#
# INPUT ARGUMENTS:
# - im : N-dimensional grayscale image in integer format.
# - c : positive interger greater than 1 specifying the number of
# clusters. c=2 is the default setting. Alternatively, c can be
# specified as a k-by-1 array of initial cluster (aka prototype)
# centroids.
#
# OUTPUT :
# - L : label image of the same size as the input image. For example,
# L==i represents the region associated with prototype C(i),
# where i=[1,k] (k = number of clusters).
# - C : 1-by-k array of cluster centroids.
# - LUT : L-by-1 array that specifies the intensity-class relations,
# where L is the dynamic intensity range of the input image.
# Specifically, LUT(1) corresponds to class assigned to
# min(im(:)) and LUT(L) corresponds to the class assigned to
# max(im(:)). See 'apply_LUT' function for more info.
#
import numpy as np
import LUT2label as label
def FastCMeans(im, c):
# Intensity range
Imin = float(np.min(im[:]))
Imax = float(np.max(im[:]))
I = np.transpose(np.array(np.arange(Imin,Imax+1)))
I = I[:, np.newaxis]
# Compute intensity histogram
H = np.histogram(im.flatten(),I.flatten())
(H1, H2) = H
#H1 = H1.flatten()
#H2 = H2.flatten()
H1 = H1[:, np.newaxis]
#H2 = H2[:, np.newaxis]
#print 'H1 and H2 Size: ', H1.shape, H2.shape
#print H1.shape
H = np.copy(np.append(H1,[1]))
H = H[:, np.newaxis]
# Initialize cluster centroids
if np.size(c) > 1:
C = c
c = np.size(c)
else:
dl = (Imax - Imin)/c
C = np.arange(Imin + dl/2, Imax+1, dl)
# Update cluster centroids
IH = I * H
dC = float(np.inf)
while (dC > 1.0E-6):
C0 = np.copy(C)
# Distance to the centroids
D = np.abs(I - C)
# Classify by proximity
Dmin = np.min(D,1)
LUT = np.argmin(D,1)
for j in range(0,c):
index = LUT==j
C[j] = np.sum(IH[index]) / np.sum(H[index])
# Change in centroids
#print (C-C0)
dC = np.max(np.abs(C-C0))
L = label.LUT2label(im,LUT)
return (L,C,LUT)