-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathisodata-working.py
463 lines (352 loc) · 16.3 KB
/
isodata-working.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import numpy as np
from scipy.cluster import vq
import scipy.misc
from PIL import Image
import tifwork
def initialize_parameters(parameters=None):
"""Auxiliar function to set default values to all the parameters not
given a value by the user.
"""
parameters = {} if not parameters else parameters
def safe_pull_value(parameters, key, default):
return parameters.get(key, default)
# number of clusters desired
K = safe_pull_value(parameters, 'K', 5)
# maximum number of iterations
I = safe_pull_value(parameters, 'I', 100)
# maximum of number of pairs of clusters which can be merged
P = safe_pull_value(parameters, 'P', 4)
# threshold value for minimum number of samples in each cluster
# (discarding clusters)
THETA_M = safe_pull_value(parameters, 'THETA_M', 10)
# threshold value for standard deviation (for split)
THETA_S = safe_pull_value(parameters, 'THETA_S', 1)
# threshold value for pairwise distances (for merge)
THETA_C = safe_pull_value(parameters, 'THETA_C', 20)
# percentage of change in clusters between each iteration
#(to stop algorithm)
THETA_O = 0.05
#can use any of both fixed or random
# number of starting clusters
#k = np.random.randint(1, K)
k = safe_pull_value(parameters, 'k', K)
ret = locals()
ret.pop('safe_pull_value')
ret.pop('parameters')
globals().update(ret)
def quit_low_change_in_clusters(centers, last_centers, iter):
"""Stop algorithm by low change in the clusters values between each
iteration.
:returns: True if should stop, otherwise False.
"""
quit = False
if centers.shape == last_centers.shape:
thresholds = np.abs((centers - last_centers) / (last_centers + 1))
if np.all(thresholds <= THETA_O): # percent of change in [0:1]
quit = True
# print "Isodata(info): Stopped by low threshold at the centers."
# print "Iteration step: %s" % iter
return quit
def merge_clusters(img_class_flat, centers, clusters_list):
"""
Merge by pair of clusters in 'below_threshold' to form new clusters.
"""
pair_dists = compute_pairwise_distances(centers)
first_p_elements = pair_dists[:P]
below_threshold = [(c1, c2) for d, (c1, c2) in first_p_elements
if d < THETA_C]
if below_threshold:
k, bands = centers.shape
count_per_cluster = np.zeros(k)
to_add = np.array([[]]).reshape(0,bands) # new clusters to add
to_delete = np.array([[]]).reshape(0,bands) # clusters to delete
for cluster in xrange(0, k):
result = np.where(img_class_flat == clusters_list[cluster])
indices = result[0]
count_per_cluster[cluster] = indices.size
for c1, c2 in below_threshold:
c1_count = float(count_per_cluster[c1]) + 1
c2_count = float(count_per_cluster[c2])
factor = 1.0 / (c1_count + c2_count)
weight_c1 = c1_count * centers[c1] #weight_c1 = [x,y,z]
weight_c2 = c2_count * centers[c2] #weight_c1 = [x,y,z]
value = round(factor * (weight_c1 + weight_c2)) #value = [x,y,z]
to_add = np.vstack([to_add, value])
to_delete = np.vstack([to_delete, [c1, c2]])
#delete old clusters and their indices from the availables array
centers = np.delete(centers, to_delete,axis =0)
clusters_list = np.delete(clusters_list, to_delete)
#generate new indices for the new clusters
#starting from the max index 'to_add.size' times
start = int(clusters_list.max())
end = to_add.size + start
centers = np.append(centers, to_add)
clusters_list = np.append(clusters_list, xrange(start, end))
#centers, clusters_list = sort_arrays_by_first(centers, clusters_list)
return centers, clusters_list
def compute_pairwise_distances(centers):
"""
Compute the pairwise distances 'pair_dists', between every two clusters
centers and returns them sorted.
Returns:
- a list with tuples, where every tuple has in it's first coord the
distance between to clusters, and in the second coord has a tuple,
with the numbers of the clusters measured.
Output example:
[(d1,(cluster_1,cluster_2)),
(d2,(cluster_3,cluster_4)),
...
(dn, (cluster_n,cluster_n+1))]
"""
pair_dists = []
size = centers.shape[0]
for i in xrange(0, size):
for j in xrange(0, size):
if i > j:
di = np.abs(centers[i] - centers[j])
di = di**2
d = np.sum(di)
d = d**0.5
pair_dists.append((d, (i, j)))
#return it sorted on the first elem
return sorted(pair_dists )
def split_clusters(img_flat, img_class_flat, centers, clusters_list):
"""
Split clusters to form new clusters.
"""
assert centers.shape[0] == clusters_list.size, \
"ERROR: split() centers and clusters_list size are different"
delta = 10
(k,bands) = centers.shape
count_per_cluster = np.zeros(k)
stddev = np.array([]).reshape(0,bands)
avg_dists_to_clusters = compute_avg_distance(img_flat, img_class_flat,
centers, clusters_list)
d = compute_overall_distance(img_class_flat, avg_dists_to_clusters,
clusters_list)
# compute all the standard deviation of the clusters
for cluster in xrange(0, k):
indices = np.where(img_class_flat == clusters_list[cluster])[0]
count_per_cluster[cluster] = indices.size
value = ((img_flat[indices] - centers[cluster]) ** 2).sum(axis = 0)
value /= count_per_cluster[cluster]
value = np.sqrt(value)
stddev = np.vstack([stddev, value])
meanstd = np.mean(stddev,axis= 1)
cluster = meanstd.argmax()
max_stddev = meanstd[cluster]
max_clusters_list = int(clusters_list.max())
if max_stddev > THETA_S:
if avg_dists_to_clusters[cluster] >= d:
if count_per_cluster[cluster] > (2.0 * THETA_M):
old_cluster = centers[cluster]
new_cluster_1 = old_cluster + delta
new_cluster_2 = old_cluster - delta
centers = np.delete(centers, cluster, axis = 0)
clusters_list = np.delete(clusters_list, cluster)
centers = np.vstack([centers, new_cluster_1, new_cluster_2])
clusters_list = np.append(clusters_list, [max_clusters_list,
(max_clusters_list + 1)])
centers, clusters_list = sort_arrays_by_first(centers,
clusters_list)
assert centers.shape[0] == clusters_list.size, \
"ERROR: split() centers and clusters_list size are different"
return centers, clusters_list
def compute_overall_distance(img_class_flat, avg_dists_to_clusters,
clusters_list):
"""
Computes the overall distance of the samples from their respective cluster
centers.
"""
k = avg_dists_to_clusters.size
total = img_class_flat.size
count_per_cluster = np.zeros(k)
for cluster in xrange(0, k):
indices = np.where(img_class_flat == clusters_list[cluster])[0]
count_per_cluster[cluster] = indices.size
d = ((count_per_cluster / total) * avg_dists_to_clusters).sum()
return d
def compute_avg_distance(img_flat, img_class_flat, centers, clusters_list):
"""
Computes all the average distances to the center in each cluster.
"""
(k,bands) = centers.shape
avg_dists_to_clusters = np.array([])
for cluster in xrange(0, k):
indices = np.where(img_class_flat == clusters_list[cluster])[0]
total_per_cluster = indices.size + 1
cen = centers[cluster].reshape(1,bands)
x , dist = vq.vq(img_flat[indices],cen)
sum_per_cluster = dist.sum()
#sum_per_cluster = (np.abs(img_flat[indices] - centers[cluster])).sum()
dj = (sum_per_cluster / float(total_per_cluster))
avg_dists_to_clusters = np.append(avg_dists_to_clusters, dj)
return avg_dists_to_clusters
def discard_clusters(img_class_flat, centers, clusters_list):
"""
Discard clusters with fewer than THETA_M.
"""
(k,bands) = centers.shape
to_delete = np.array([])
assert centers.shape[0] == clusters_list.size, \
"ERROR: discard_cluster() centers and clusters_list size are different"
for cluster in xrange(0, k):
indices = np.where(img_class_flat == clusters_list[cluster])[0]
total_per_cluster = indices.size
if total_per_cluster <= THETA_M:
to_delete = np.append(to_delete, cluster)
if to_delete.size:
new_centers = np.delete(centers, to_delete,axis= 0)
new_clusters_list = np.delete(clusters_list, to_delete)
else:
new_centers = centers
new_clusters_list = clusters_list
#new_centers, new_clusters_list = sort_arrays_by_first(new_centers, new_clusters_list)
# shape_bef = centers.shape[0]
# shape_aft = new_centers.shape[0]
# print "Isodata(info): Discarded %s clusters." % (shape_bef - shape_aft)
# if to_delete.size:
# print "Clusters discarded %s" % to_delete
assert new_centers.shape[0] == new_clusters_list.size, \
"ERROR: discard_cluster() centers and clusters_list size are different"
return new_centers, new_clusters_list
def update_clusters(img_flat, img_class_flat, centers, clusters_list):
""" Update clusters. """
(k,bands) = centers.shape
new_centers = np.array([]).reshape(0,bands)
new_clusters_list = np.array([])
assert centers.shape[0] == clusters_list.size, \
"ERROR: update_clusters() centers and clusters_list size are different"
for cluster in xrange(0, k):
indices = np.where(img_class_flat == clusters_list[cluster])[0]
#get whole cluster
cluster_values = img_flat[indices]
#sum and count the values
sum_per_cluster = cluster_values.sum(axis = 0)
total_per_cluster = (cluster_values.shape[0]) + 1
#compute the new center of the cluster
new_cluster = sum_per_cluster / total_per_cluster
new_centers = np.vstack([new_centers, new_cluster])
new_clusters_list = np.append(new_clusters_list, cluster)
#new_centers, new_clusters_list = sort_arrays_by_first(new_centers, new_clusters_list)
assert new_centers.shape[0] == new_clusters_list.size, \
"ERROR: update_clusters() centers and clusters_list size are different"
return new_centers, new_clusters_list
def initial_clusters(img_flat, k, method="linspace"):
"""
Define initial clusters centers as startup.
By default, the method is "linspace". Other method available is "random".
"""
methods_availables = ["linspace", "random"]
assert method in methods_availables, "ERROR: method %s is no valid." \
"Methods availables %s" \
% (method, methods_availables)
if method == "linspace":
start, end = 0, img_flat.shape[0]
indices = np.random.randint(start, end, k)
centers = np.array([])
for x in indices:
centers = np.append(centers,img_flat[x])
centers = centers.reshape(k,img_flat.shape[1])
if method == "random":
start, end = 0, img_flat.shape[0]
indices = np.random.randint(start, end, k)
centers = np.array([])
for x in indices:
centers = np.append(centers,img_flat[x])
centers = centers.reshape(k,img_flat.shape[1])
return centers
def sort_arrays_by_first(centers, clusters_list):
"""
Sort the array 'centers' and the with indices of the sorted centers
order the array 'clusters_list'.
Example: centers=[22, 33, 0, 11] and cluster_list=[7,6,5,4]
returns (array([ 0, 11, 22, 33]), array([5, 4, 7, 6]))
"""
assert centers.shape[0] == clusters_list.size, \
"ERROR: sort_arrays_by_first centers and clusters_list size are not equal"
indices = np.argsort(centers,axis=1) #sorted indic
sorted_centers = centers[indices[:,0]]
sorted_clusters_list = clusters_list[indices[:,0]]
return sorted_centers, sorted_clusters_list
def isodata_classification(img, parameters=None):
"""
Classify a numpy 'img' using Isodata algorithm.
Parameters: a dictionary with the following keys.
- img: an input numpy array that contains the image to classify.
- parameters: a dictionary with the initial values.
If 'parameters' are not specified, the algorithm uses the default
ones.
+ number of clusters desired.
K = 15
+ max number of iterations.
I = 100
+ max number of pairs of clusters which can be ,erged.
P = 2
+ threshold value for min number in each cluster.
THETA_M = 10
+ threshold value for standard deviation (for split).
THETA_S = 0.1
+ threshold value for pairwise distances (for merge).
THETA_C = 2
+ threshold change in the clusters between each iter.
THETA_O = 0.01
Note: if some(or all) parameters are nos providen, default values
will be used.
Returns:
- img_class: a numpy array with the classification.
"""
global K, I, P, THETA_M, THETA_S, THEHTA_C, THETA_O, k
initialize_parameters(parameters)
N, M,bands = img.shape # for reshaping at the end
img_flat = img.reshape((N*M),bands)
clusters_list = np.arange(k) # number of clusters availables
print "Isodata(info): Starting algorithm with %s classes" % k
centers = initial_clusters(img_flat, k, "linspace")
for iter in xrange(0, I):
# print "Isodata(info): Iteration:%s Num Clusters:%s" % (iter, k)
last_centers = centers.copy()
# assing each of the samples to the closest cluster center
img_class_flat, dists = vq.vq(img_flat, centers)
centers, clusters_list = discard_clusters(img_class_flat,
centers, clusters_list)
centers, clusters_list = update_clusters(img_flat,
img_class_flat,
centers, clusters_list)
k = centers.shape[0]
if k <= (K / 2.0): # too few clusters => split clusters
centers, clusters_list = split_clusters(img_flat, img_class_flat,
centers, clusters_list)
elif k > (K * 2.0): # too many clusters => merge clusters
centers, clusters_list = merge_clusters(img_class_flat, centers,
clusters_list)
else: # nor split or merge are needed
pass
k , bands = centers.shape
###############################################################################
if quit_low_change_in_clusters(centers, last_centers, iter):
break
# take_snapshot(img_class_flat.reshape(N, M), iteration_step=iter)
###############################################################################
print "Isodata(info): Finished with %s classes" % k
print "Isodata(info): Number of Iterations: %s" % (iter + 1)
return img_class_flat
filename = 'liss2.tif'
dataset = tifwork.openTIF(filename)
(cols,rows,bands,bandArr) = tifwork.detailsTIF(dataset)
bandArr = tifwork.getBand(dataset,bands,bandArr)
imageArray = np.array(bandArr,dtype =float)
x = {'K':5 , 'I':200}
isoarr = isodata_classification(imageArray,x)
#print rows
colorArray=np.array([[0,0,100],[100,0,0],[0,100,0],[100,100,0],[75,75,75],[0,100,100],[100,0,100],[50,25,25],[25,50,25],[25,25,50]])
clusteredArray = np.zeros((rows*cols,3))
clusters = isoarr.max()
#print clusters
for i in xrange(clusters+1):
indices = np.where(isoarr == i)[0]
if indices.size:
clusteredArray[indices] = colorArray[i]
clusteredArray = clusteredArray.reshape(rows,cols,3)
#print clusteredArray
scipy.misc.imsave('iso.jpg',clusteredArray)