-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathEval.hs
812 lines (767 loc) · 34.1 KB
/
Eval.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
{-# LANGUAGE CPP #-}
module Eval ( eval
, evals
, app
, conv
, fstSVal
) where
import Control.Arrow (second)
import Data.List
import Data.Maybe (fromMaybe)
import qualified Debug.Trace as DT
import CTT
debug :: Bool
#ifdef debugmode
debug = True
#else
debug = False
#endif
trace :: String -> a -> a
trace s e = if debug then DT.trace s e else e
look :: Ident -> OEnv -> (Binder, Val)
look x (OEnv (Pair rho (n@(y,l),u)) opaques)
| x == y = (n, u)
| otherwise = look x (OEnv rho opaques)
look x r@(OEnv (PDef es r1) o) = case lookupIdent x es of
Just (y,t) -> (y,eval r t)
Nothing -> look x (OEnv r1 o)
eval :: OEnv -> Ter -> Val
eval e U = VU
eval e (PN pn) = evalAppPN e pn []
eval e t@(App r s) = case unApps t of
(PN pn,us) -> evalAppPN e pn us
_ -> app (eval e r) (eval e s)
eval e (Var i) =
let (x,v) = look i e
in if x `elem` opaques e then VVar ("opaque_" ++ show x) $ support v else v
eval e (Pi a b) = VPi (eval e a) (eval e b)
eval e (Lam x t) = Ter (Lam x t) e -- stop at lambdas
eval e (Sigma a b) = VSigma (eval e a) (eval e b)
eval e (SPair a b) = VSPair (eval e a) (eval e b)
eval e (Fst a) = fstSVal $ eval e a
eval e (Snd a) = sndSVal $ eval e a
eval e (Where t decls) = eval (oPDef False decls e) t
eval e (Con name ts) = VCon name $ map (eval e) ts
eval e (Split pr alts) = Ter (Split pr alts) e
eval e (Sum pr ntss) = Ter (Sum pr ntss) e
evals :: OEnv -> [(Binder,Ter)] -> [(Binder,Val)]
evals env = map (second (eval env))
fstSVal, sndSVal :: Val -> Val
fstSVal (VSPair a b) = a
fstSVal u | isNeutral u = VFst u
| otherwise = error $ show u ++ " should be neutral"
sndSVal (VSPair a b) = b
sndSVal u | isNeutral u = VSnd u
| otherwise = error $ show u ++ " should be neutral"
-- Application
app :: Val -> Val -> Val
app (Ter (Lam x t) e) u = eval (oPair e (x,u)) t
app u1@(Kan Com (VPi a b) box@(Box dir x v nvs)) u =
trace "Pi Com" $
let z = fresh (u1,u)
box' = swap box x z
ufill = fill (swap a x z) (Box (mirror dir) z u [])
bcu = cubeToBox ufill (shapeOfBox box')
in com (app (swap b x z) ufill) (appBox box' bcu)
app kf@(Kan Fill (VPi a b) box@(Box dir i w nws)) v =
trace "Pi fill" $
let x = fresh (kf, v)
u = v `face` (i,dir)
ufill = fill a (Box (mirror dir) i u [])
bcu = cubeToBox ufill (shapeOfBox box)
vfill = fill a (Box (mirror dir) i u [((x,down),ufill),((x,up),v)])
vx = fill (app b ufill) (appBox box bcu)
vi0 = app w (vfill `face` (i,mirror dir))
vi1 = com (app b ufill) (appBox box bcu)
nvs = [ ((n,d),app ws (vfill `face` (n,d)))
| ((n,d),ws) <- nws ]
in com (app b vfill) (Box up x vx (((i,mirror dir),vi0) : ((i,dir),vi1):nvs))
-- app vext@(VExt x bv fv gv pv) w = do
-- -- NB: there are various choices how to construct this
-- let y = fresh (vext, w)
-- w0 <- w `face` (x,down)
-- left <- app fv w0
-- right <- app gv (swap w x y)
-- pvxw <- appNameM (app pv w0) x
-- comM (app bv w) (return (Box up y pvxw [((x,down),left),((x,up),right)]))
app vhext@(VHExt x bv fv gv pv) w =
let a0 = w `face` (x,down)
a1 = w `face` (x,up)
in appName (apps pv [a0, a1, Path x w]) x
app (Ter (Split _ nvs) e) (VCon name us) = case lookup name nvs of
Just (xs,t) -> eval (upds e (zip xs us)) t
Nothing -> error $ "app: Split with insufficient arguments; " ++
"missing case for " ++ name
app u@(Ter (Split _ _) _) v
| isNeutral v = VSplit u v -- v should be neutral
| otherwise = error $ "app: (VSplit) " ++ show v ++ " is not neutral"
app r s
| isNeutral r = VApp r s -- r should be neutral
| otherwise = error $ "app: (VApp) " ++ show r ++ " is not neutral"
apps :: Val -> [Val] -> Val
apps = foldl app
appBox :: Box Val -> Box Val -> Box Val
appBox (Box dir x v nvs) (Box _ _ u nus) =
let lookup' x = fromMaybe (error "appBox") . lookup x
in Box dir x (app v u) [ (nnd,app v (lookup' nnd nus))
| (nnd,v) <- nvs ]
appName :: Val -> Name -> Val
appName (Path x u) y | y `elem` [0,1] = u `face` (x,y)
appName p y | y `elem` [0,1] = VAppName p y -- p has to be neutral
appName (Path x u) y | x == y = u
| y `elem` support u = error ("appName " ++ "\nu = " ++
show u ++ "\ny = " ++ show y)
| otherwise = swap u x y
appName v y = VAppName v y
-- Apply a primitive notion
evalAppPN :: OEnv -> PN -> [Ter] -> Val
evalAppPN e pn ts
| length ts < arity pn =
-- Eta expand primitive notions
let r = arity pn - length ts
binders = map (\n -> '_' : show n) [1..r]
vars = map Var binders
in Ter (mkLams binders $ mkApps (PN pn) (ts ++ vars)) e
| otherwise =
let (args,rest) = splitAt (arity pn) ts
vas = map (eval e) args
p = evalPN (freshs e) pn vas
r = map (eval e) rest
in apps p r
-- Evaluate primitive notions
evalPN :: [Name] -> PN -> [Val] -> Val
evalPN (x:_) Id [a,a0,a1] = VId (Path x a) a0 a1
evalPN (x:_) IdP [_,_,p,a0,a1] = VId p a0 a1
evalPN (x:_) Refl [_,a] = Path x a
evalPN (x:_) TransU [_,_,p,t] = com (appName p x) (Box up x t [])
evalPN (x:_) TransInvU [_,_,p,t] = com (appName p x) (Box down x t [])
evalPN (x:_) TransURef [a,t] = Path x $ fill a (Box up x t [])
evalPN (x:_) TransUEquivEq [_,b,f,_,_,u] =
Path x $ fill b (Box up x (app f u) []) -- TODO: Check this!
evalPN (x:y:_) CSingl [a,u,v,p] =
let pv = appName p y
theta = fill a (Box up y u [((x,down),u),((x,up),pv)])
omega = theta `face` (y,up)
in Path x (VSPair omega (Path y theta))
-- evalPN (x:_) Ext [_,b,f,g,p] = return $ Path x $ VExt x b f g p
evalPN (x:_) HExt [_,b,f,g,p] = Path x $ VHExt x b f g p
evalPN _ Inh [a] = VInh a
evalPN _ Inc [_,t] = VInc t
evalPN (x:_) Squash [_,r,s] = Path x $ VSquash x r s
evalPN _ InhRec [_,b,p,phi,a] = inhrec b p phi a
evalPN (x:_) EquivEq [a,b,f,s,t] = Path x $ VEquivEq x a b f s t
evalPN (x:y:_) EquivEqRef [a,s,t] =
Path y $ Path x $ VEquivSquare x y a s t
evalPN (x:_) MapOnPath [_,_,f,_,_,p] = Path x $ app f (appName p x)
evalPN (x:_) MapOnPathD [_,_,f,_,_,p] = Path x $ app f (appName p x)
evalPN (x:_) AppOnPath [_,_,_,_,_,_,p,q] =
Path x $ app (appName p x) (appName q x)
evalPN (x:_) MapOnPathS [_,_,_,f,_,_,p,_,_,q] =
Path x $ app (app f (appName p x)) (appName q x)
evalPN _ Circle [] = VCircle
evalPN _ Base [] = VBase
evalPN (x:_) Loop [] = Path x $ VLoop x
evalPN _ CircleRec [f,b,l,s] = circlerec f b l s
evalPN _ I [] = VI
evalPN _ I0 [] = VI0
evalPN _ I1 [] = VI1
evalPN (x:_) Line [] = Path x $ VLine x
evalPN _ IntRec [f,s,e,l,u] = intrec f s e l u
evalPN _ u _ = error ("evalPN " ++ show u)
-- appS1 :: Val -> Val -> Name -> Eval Val
-- appS1 f p x | x `elem` [0,1] = appName p x
-- appS1 f p x = do
-- let y = fresh (p,(f,x))
-- q <- appName p y
-- a <- appName p 0
-- b <- appName p 1
-- newBox <- Box down y b <$>
-- sequenceSnd [ ((x,down),q `face` (x,down))
-- , ((x,up),b `face` (x,up))]
-- fb <- app f VBase
-- fl <- app f (VLoop y)
-- tu <- fillM (return VU) (Box down y fb <$>
-- sequenceSnd [ ((x,down),fl `face` (x,down))
-- , ((x,up),fb `face` (x,up))])
-- com tu newBox
-- Compute the face of an environment
faceEnv :: OEnv -> Side -> OEnv
faceEnv e xd = mapOEnv (`face` xd) e
faceName :: Name -> Side -> Name
faceName 0 _ = 0
faceName 1 _ = 1
faceName x (y,d) | x == y = d
| otherwise = x
-- -- Compute the face of a value
face :: Val -> Side -> Val
face u xdir@(x,dir) =
let fc v = v `face` xdir in case u of
VU -> VU
Ter t e -> eval (e `faceEnv` xdir) t
VId a v0 v1 -> VId (fc a) (fc v0) (fc v1)
Path y v | x == y -> u
| otherwise -> Path y (fc v)
-- VExt y b f g p | x == y && dir == down -> f
-- | x == y && dir == up -> g
-- | otherwise ->
-- VExt y <$> fc b <*> fc f <*> fc g <*> fc p
VHExt y b f g p | x == y && dir == down -> f
| x == y && dir == up -> g
| otherwise -> VHExt y (fc b) (fc f) (fc g) (fc p)
VPi a f -> VPi (fc a) (fc f)
VSigma a f -> VSigma (fc a) (fc f)
VSPair a b -> VSPair (fc a) (fc b)
VInh v -> VInh (fc v)
VInc v -> VInc (fc v)
VSquash y v0 v1 | x == y && dir == down -> v0
| x == y && dir == up -> v1
| otherwise -> VSquash y (fc v0) (fc v1)
VCon c us -> VCon c $ map fc us
VEquivEq y a b f s t | x == y && dir == down -> a
| x == y && dir == up -> b
| otherwise ->
VEquivEq y (fc a) (fc b) (fc f) (fc s) (fc t)
VPair y a v | x == y && dir == down -> a
| x == y && dir == up -> fc v
| otherwise -> VPair y (fc a) (fc v)
VEquivSquare y z a s t | x == y -> a
| x == z && dir == down -> a
| x == z && dir == up ->
let idV = Ter (Lam (noLoc "x") (Var "x")) oEmpty
in VEquivEq y a a idV s t
| otherwise ->
VEquivSquare y z (fc a) (fc s) (fc t)
VSquare y z v | x == y -> fc v
| x == z && dir == down -> fc v
| x == z && dir == up ->
let v' = fc v
in VPair y (v' `face` (y,down)) v'
| otherwise -> VSquare y z $ fc v
Kan Fill a b@(Box dir' y v nvs)
| x /= y && x `notElem` nonPrincipal b -> fill (fc a) (mapBox fc b)
| x `elem` nonPrincipal b -> lookBox (x,dir) b
| x == y && dir == mirror dir' -> v
| otherwise -> com a b
VFillN a b@(Box dir' y v nvs)
| x /= y && x `notElem` nonPrincipal b -> fill (fc a) (mapBox fc b)
| x `elem` nonPrincipal b -> lookBox (x,dir) b
| x == y && dir == mirror dir' -> v
| otherwise -> com a b
Kan Com a b@(Box dir' y v nvs)
| x == y -> u
| x `notElem` nonPrincipal b -> com (fc a) (mapBox fc b)
| x `elem` nonPrincipal b -> lookBox (x,dir) b `face` (y,dir')
VComN a b@(Box dir' y v nvs)
| x == y -> u
| x `notElem` nonPrincipal b -> com (fc a) (mapBox fc b)
| x `elem` nonPrincipal b -> lookBox (x,dir) b `face` (y,dir')
VComp b@(Box dir' y _ _)
| x == y -> u
| x `notElem` nonPrincipal b -> VComp $ mapBox fc b
| x `elem` nonPrincipal b -> lookBox (x,dir) b `face` (y,dir')
VFill z b@(Box dir' y v nvs)
| x == z -> u
| x /= y && x `notElem` nonPrincipal b -> VFill z $ mapBox fc b
| (x,dir) `elem` defBox b ->
lookBox (x,dir) (mapBox (`face` (z,down)) b)
| x == y && dir == dir' ->
VComp (mapBox (`face` (z,up)) b)
VInhRec b p h a -> inhrec (fc b) (fc p) (fc h) (fc a)
VApp u v -> app (fc u) (fc v)
VAppName u n -> appName (fc u) (faceName n xdir)
VSplit u v -> app (fc u) (fc v)
VVar s d -> VVar s [ faceName n xdir | n <- d ]
VFst p -> fstSVal $ fc p
VSnd p -> sndSVal $ fc p
VCircle -> VCircle
VBase -> VBase
VLoop y | x == y -> VBase
| otherwise -> VLoop y
VCircleRec f b l s -> circlerec (fc f) (fc b) (fc l) (fc s)
VI -> VI
VI0 -> VI0
VI1 -> VI1
VLine y
| x == y && dir == down -> VI0
| x == y && dir == up -> VI1
| otherwise -> VLine y
VIntRec f s e l u -> intrec (fc f) (fc s) (fc e) (fc l) (fc u)
unCompAs :: Val -> Name -> Box Val
unCompAs (VComp box) y = swap box (pname box) y
unCompAs v _ = error $ "unCompAs: " ++ show v ++ " is not a VComp"
unFillAs :: Val -> Name -> Box Val
unFillAs (VFill x box) y = swap box x y
unFillAs v _ = error $ "unFillAs: " ++ show v ++ " is not a VFill"
-- p(x) = <z>q(x,z)
-- a(x) = q(x,0) b(x) = q(x,1)
-- q(0,y) connects a(0) and b(0)
-- we connect q(0,0) to q(1,1)
-- appDiag :: Val -> Val -> Name -> Val
-- appDiag tu p x | x `elem` [0,1] = appName p x
-- appDiag tu p x =
-- traceb ("appDiag " ++ "\ntu = " ++ show tu ++ "\np = " ++ show p ++ "\nx = "
-- -- ++ show x ++ " " ++ show y
-- -- ++ "\nq = " ++ show q) -- "\nnewBox =" ++ show newBox)
-- com tu newBox
-- where y = fresh (p,(tu,x))
-- q = appName p y
-- a = appName p 0
-- b = appName p 1
-- newBox = Box down y b [((x,down),q `face` (x,down)),((x,up),b `face` (x,up))]
cubeToBox :: Val -> Box () -> Box Val
cubeToBox v = modBox (\nd _ -> v `face` nd)
inhrec :: Val -> Val -> Val -> Val -> Val
inhrec _ _ phi (VInc a) = app phi a
inhrec b p phi (VSquash x a0 a1) =
let fc w d = w `face` (x,d)
b0 = inhrec (fc b down) (fc p down) (fc phi down) a0
b1 = inhrec (fc b up) (fc p up) (fc phi up) a1
z = fresh [b,p,phi,b0,b1]
b0fill = fill b (Box up x b0 [])
b0fillx1 = b0fill `face` (x, up)
right = appName (app (app (fc p up) b0fillx1) b1) z
in com b (Box up z b0fill [((x,down),b0),((x,up),right)])
inhrec b p phi (Kan ktype (VInh a) box) =
let irec (j,dir) v = let fc v = v `face` (j,dir)
in inhrec (fc b) (fc p) (fc phi) v
box' = modBox irec box
in kan ktype b box'
inhrec b p phi v = VInhRec b p phi v -- v should be neutral
circlerec :: Val -> Val -> Val -> Val -> Val
circlerec _ b _ VBase = b
circlerec f b l v@(VLoop x) =
let y = fresh [f,b,l,v]
pxy = appName l y
theta = connection VCircle x y v
a = app f theta
px1 = pxy `face` (y,up)
p11 = px1 `face` (x,up)
p0y = pxy `face` (x,down)
in com a (Box down y px1 [((x,down),p0y),((x,up),p11)])
circlerec f b l v@(Kan ktype VCircle box) = kan ktype ffillv box'
where y = fresh [f,b,l,v]
boxxy = swap box (pname box) y
crec side = let fc w = w `face` side
in circlerec (fc f) (fc b) (fc l)
ffillv = app f (Kan Fill VCircle boxxy)
box' = modBox crec boxxy
circlerec f b l v = VCircleRec f b l v -- v should be neutral
-- Assumes y is fresh and x fresh for a; constructs a connection
-- square with faces u (x), u (y), u (1), u (1).
connection :: Val -> Name -> Name -> Val -> Val
connection a x y u =
let u1 = u `face` (x,up)
ufill = fill a (Box down y u1 [((x,down), swap u x y), ((x,up),u1)])
z = fresh ([x,y], [a,u])
ufillzy = swap ufill x z
ufillzx = swap ufillzy y x
in com a (Box down z u1 [ ((x,down),ufillzy), ((x,up),u1)
, ((y,down),ufillzx), ((y,up),u1)])
intrec :: Val -> Val -> Val -> Val -> Val -> Val
intrec _ s _ _ VI0 = s
intrec _ _ e _ VI1 = e
intrec f s e l v@(VLine x) =
let y = fresh [f,s,e,l,v]
pxy = appName l y
theta = connection VI x y v
a = app f theta
px1 = pxy `face` (y,up)
p11 = px1 `face` (x,up)
p0y = pxy `face` (x,down)
in com a (Box down y px1 [((x,down),p0y),((x,up),p11)])
intrec f s e l v@(Kan ktype VCircle box) =
let irec side u = let fc w = w `face` side
in intrec (fc f) (fc s) (fc e) (fc l) u
fv = app f v
box' = modBox irec box
in kan ktype fv box'
intrec f s e l v = VIntRec f s e l v -- v should be neutral
kan :: KanType -> Val -> Box Val -> Val
kan Fill = fill
kan Com = com
isNeutralFill :: Val -> Box Val -> Bool
isNeutralFill v box | isNeutral v = True
isNeutralFill v@(Ter (PN (Undef _)) _) box = True
isNeutralFill (Ter (Sum _ _) _) (Box _ _ v nvs) =
isNeutral v || or [ isNeutral u | (_,u) <- nvs ]
isNeutralFill v@(Kan Com VU tbox') box@(Box d x _ _) = do
let nK = nonPrincipal tbox'
nJ = nonPrincipal box
nL = nJ \\ nK
aDs = if x `elem` nK then allDirs nL else (x,mirror d):allDirs nL
or [ isNeutral (lookBox yc box) | yc <- aDs ]
isNeutralFill v@(Kan Fill VU tbox) box =
or [ isNeutral (lookBox yc box) | yc <- defBox box \\ defBox tbox ]
isNeutralFill v@(VEquivSquare y z _ _ _) box@(Box d x _ _) = do
let nJ = nonPrincipal box
nL = nJ \\ [y,z]
aDs = if x `elem` [y,z] then allDirs nL else (x,mirror d) : allDirs nL
or [ isNeutral (lookBox yc box) | yc <- aDs ]
isNeutralFill v@(VEquivEq z a b f s t) box@(Box d x vx nxs)
| d == down && z == x = isNeutral $ app s vx
| otherwise = -- TODO: check
let nJ = nonPrincipal box
nL = nJ \\ [z]
aDs = if x == z then allDirs nL else (x,mirror d) : allDirs nL
in or [ isNeutral (lookBox yc box) | yc <- aDs ]
isNeutralFill v box = False
-- TODO: Simplify?
fills :: [(Binder,Ter)] -> OEnv -> [Box Val] -> [Val]
fills [] _ [] = []
fills ((x,a):as) e (box:boxes) =
let v = fill (eval e a) box
vs = fills as (oPair e (x,v)) boxes
in v : vs
fills _ _ _ = error "fills: different lengths of types and values"
unPack :: Name -> Name -> (Name,Dir) -> Val -> Val
unPack x y (z,c) v | z /= x && z /= y = unSquare v
| z == y && c == up = sndVal v
| otherwise = v
-- -- Kan filling
fill :: Val -> Box Val -> Val
fill v box | isNeutralFill v box = VFillN v box
fill vid@(VId a v0 v1) box@(Box dir i v nvs) =
let x = fresh (vid, box)
box' = consBox (x,(v0,v1)) (mapBox (`appName` x) box)
in Path x $ fill (a `appName` x) box'
fill (VSigma a f) box@(Box dir x v nvs) =
let u = fill a (mapBox fstSVal box)
in VSPair u $ fill (app f u) (mapBox sndSVal box)
-- assumes cvs are constructor vals
fill v@(Ter (Sum _ nass) env) box@(Box _ _ (VCon n _) _) = case getIdent n nass of
Just as ->
let boxes = transposeBox $ mapBox unCon box
-- fill boxes for each argument position of the constructor
in VCon n $ fills as env boxes
Nothing -> error $ "fill: missing constructor in labelled sum " ++ n
fill (VEquivSquare x y a s t) box@(Box dir x' vx' nvs) =
VSquare x y $ fill a (modBox (unPack x y) box)
fill veq@(VEquivEq x a b f s t) box@(Box dir z vz nvs)
| x /= z && x `notElem` nonPrincipal box =
trace "VEquivEq case 1" $
let ax0 = fill a (mapBox fstVal box)
bx0 = app f ax0
bx = mapBox sndVal box
bx' = mapBox (`face` (x,up)) bx
bx1 = fill b bx' --- independent of x
v = fill b $ (x,(bx0,bx1)) `consBox` bx
in VPair x ax0 v
| x /= z && x `elem` nonPrincipal box =
trace "VEquivEq case 2" $
let ax0 = lookBox (x,down) box
-- modification function
mf (ny,dy) vy | x /= ny = sndVal vy
| dy == down = app f ax0
| otherwise = vy
bx = modBox mf box
in VPair x ax0 (fill b bx)
| x == z && dir == up =
trace "VEquivEq case 3" $
let ax0 = vz
bx0 = app f ax0
v = fill b $ Box dir z bx0 [ (nnd,sndVal v) | (nnd,v) <- nvs ]
in VPair x ax0 v
| x == z && dir == down =
trace "VEquivEq case 4" $
let gbsb = app s vz
(gb,sb) = (fstSVal gbsb, sndSVal gbsb)
y = fresh (veq, box)
vy = appName sb x
vpTSq :: Name -> Dir -> Val -> (Val,Val)
vpTSq nz dz (VPair z a0 v0) =
let vp = VSPair a0 (Path z v0)
t0 = t `face` (nz,dz)
b0 = vz `face` (nz,dz)
l0sq0 = appName (app (app t0 b0) vp) y
(l0,sq0) = (fstSVal l0sq0, sndSVal l0sq0)
sq0x = appName sq0 x
in (l0,sq0x) -- TODO: check the correctness of the square s0
-- TODO: Use modBox!
vsqs = [ ((n,d),vpTSq n d v) | ((n,d),v) <- nvs]
box1 = Box up y gb [ (nnd,v) | (nnd,(v,_)) <- vsqs ]
afill = fill a box1
acom = afill `face` (y,up)
fafill = app f afill
box2 = Box up y vy (((x,down),fafill) : ((x,up),vz) :
[ (nnd,v) | (nnd,(_,v)) <- vsqs ])
bcom = com b box2
in VPair x acom bcom
| otherwise = error "fill EqEquiv"
fill v@(Kan Com VU tbox') box@(Box dir x' vx' nvs')
| toAdd /= [] = -- W.l.o.g. assume that box contains faces for
-- the non-principal sides of tbox.
trace "Kan Com 1" $
let add :: Side -> Val
add yc = let box' = mapBox (`face` yc) box
in fill (lookBox yc tbox `face` (x,tdir)) box'
sides' = [ (n,(add (n,down),add (n,up))) | n <- toAdd ]
in fill v (sides' `appendBox` box)
| x' `notElem` nK =
trace "Kan Com 2" $
let principal = fill tx (mapBox (pickout (x,tdir')) boxL)
nonprincipal =
[ let pyc = principal `face` yc
side = [((x,tdir),lookBox yc box),((x,tdir'),pyc)]
v' = fill (lookBox yc tbox)
(side `appendSides` mapBox (pickout yc) boxL)
in (yc,v')
| yc <- allDirs nK ]
in VComp (Box tdir x principal nonprincipal)
| x' `elem` nK =
trace "Kan Com 3" $
let -- assumes zc in defBox tbox
auxsides zc = [ (yd,pickout zc (lookBox yd box)) | yd <- allDirs nL ]
-- extend input box along x with orientation tdir'; results
-- in the non-principal faces on the intersection of defBox
-- box and defBox tbox; note, that the intersection contains
-- (x',dir'), but not (x',dir) (and (x,_))
npintbox = modBox (\yc boxside -> fill (lookBox yc tbox)
(Box tdir' x boxside (auxsides yc)))
(subBox (nK `intersect` nJ) box)
npintfacebox = mapBox (`face` (x,tdir')) npintbox
principal = fill tx (auxsides (x,tdir') `appendSides` npintfacebox)
nplp = principal `face` (x',dir)
fnpintboxs = [ (yc,v `face` (x',dir)) | (yc,v) <- sides npintbox ]
nplnp = auxsides (x',dir) ++ fnpintboxs
-- the missing non-principal face on side (x',dir)
v' = fill (lookBox (x',dir) tbox) (Box tdir x nplp nplnp)
nplast = ((x',dir),v')
in VComp (Box tdir x principal (nplast:fromBox npintbox))
where nK = nonPrincipal tbox
nJ = nonPrincipal box
z = fresh (tbox', box)
-- x is z
tbox@(Box tdir x tx nvs) = swap tbox' (pname tbox') z
toAdd = nK \\ (x' : nJ)
nL = nJ \\ nK
boxL = subBox nL box
dir' = mirror dir
tdir' = mirror tdir
-- asumes zd is in the sides of tbox
pickout zd vcomp = lookBox zd (unCompAs vcomp z)
fill v@(Kan Fill VU tbox@(Box tdir x tx nvs)) box@(Box dir x' vx' nvs')
-- the cases should be (in order):
-- 1) W.l.o.g. K subset x', J
-- 2) x' = x & dir = tdir
-- 3) x' = x & dir = mirror tdir
-- 4) x' `notElem` K
-- 5) x' `elem` K
| toAdd /= [] =
-- W.l.o.g. x,nK subset x':nJ
trace "Kan Fill VU Case 1" $
let add :: Side -> Val
add zc = fill (v `face` zc) (mapBox (`face` zc) box)
newSides = [ (zc,add zc) | zc <- allDirs toAdd ]
in fill v (newSides `appendSides` box)
| x == x' && dir == tdir =
-- assumes K subset x',J
trace "Kan Fill VU Case 2" $
let boxp = lookBox (x,dir') box -- is vx'
principal = fill (lookBox (x',tdir') tbox)
(Box up z boxp (auxsides (x',tdir')))
nonprincipal =
[ (zc,let principzc = lookBox zc box
fpzc = principal `face` zc
-- "degenerate" along z!
ppzc = principzc `face` (x,tdir)
sides = [((x,tdir'),fpzc),((x,tdir),ppzc)]
in fill (lookBox zc tbox)
(Box up z principzc (sides ++ auxsides zc)))
| zc <- allDirs nK ]
in VFill z (Box tdir x principal nonprincipal)
| x == x' && dir == mirror tdir =
-- assumes K subset x',J
trace "Kan Fill VU Case 3" $
let -- the principal side of box must be a VComp
-- should be safe given the neutral test at the beginning
upperbox = unCompAs (lookBox (x,tdir) box) x
nonprincipal =
[ (zc,let top = lookBox zc upperbox
bottom = lookBox zc box
princ = top `face` (x,tdir) -- same as: bottom `face` (x,tdir)
sides = [((z,down),bottom),((z,up),top)]
in fill (lookBox zc tbox) (Box tdir' x princ -- "degenerate" along z!
(sides ++ auxsides zc)))
| zc <- allDirs nK ]
nonprincipalfaces = [ (zc,u `face` (x,dir)) | (zc,u) <- nonprincipal ]
principal = fill (lookBox (x,tdir') tbox)
(Box up z (lookBox (x,tdir') upperbox)
(nonprincipalfaces ++ auxsides (x,tdir')))
in VFill z (Box tdir x principal nonprincipal)
| x' `notElem` nK =
-- assumes x,K subset x',J
trace "Kan Fill VU Case 4" $
let xaux = unCompAs (lookBox (x,tdir) box) x
boxprinc = unFillAs (lookBox (x',dir') box) z
princnp = [((z,up),lookBox (x,tdir') xaux),
((z,down),lookBox (x,tdir') box)]
++ auxsides (x,tdir')
principal = fill (lookBox (x,tdir') tbox) -- tx
(Box dir x' (lookBox (x,tdir') boxprinc) princnp)
nonprincipal = [ let yup = lookBox yc xaux
fyup = yup `face` (x,tdir)
np = [ ((z,up),yup), ((z,down),lookBox yc box)
, ((x,tdir), fyup) -- deg along z!
, ((x,tdir'), principal `face` yc) ]
++ auxsides yc
fb = fill (lookBox yc tbox)
(Box dir x' (lookBox yc boxprinc) np)
in (yc, fb)
| yc <- allDirs nK]
in VFill z (Box tdir x principal nonprincipal)
| x' `elem` nK =
-- assumes x,K subset x',J
trace "Kan Fill VU Case 5" $
-- surprisingly close to the last case of the Kan-Com-VU filling
let upperbox = unCompAs (lookBox (x,tdir) box) x
npintbox = modBox (\zc downside ->
let bottom = lookBox zc box
top = lookBox zc upperbox
princ = downside
-- same as bottom `face` (x',tdir) and
-- top `face` (x',tdir)
sides = [((z,down),bottom),((z,up),top)]
in fill (lookBox zc tbox)
(Box tdir' x princ (sides ++ auxsides zc)))
(subBox (nK `intersect` nJ) box) -- intersection is nK - x'
npint = fromBox npintbox
npintfacebox = mapBox (`face` (x,tdir')) npintbox
principalbox = ([ ((z,down),lookBox (x,tdir') box)
, ((z,up) ,lookBox (x,tdir') upperbox)]
++ auxsides (x,tdir'))
`appendSides` npintfacebox
principal = fill tx principalbox
nplp = lookBox (x',dir) upperbox
nplnp = [ ((x,tdir), nplp `face` (x',dir)) -- deg along z!
, ((x,tdir'),principal `face` (x',dir)) ]
++ auxsides (x',dir)
++ [ (zc,u `face` (x',dir)) | (zc,u) <- sides npintbox ]
fb = fill (lookBox (x',dir) tbox) (Box down z nplp nplnp)
in VFill z (Box tdir x principal (((x',dir),fb) : npint))
where z = fresh (v, box)
nK = nonPrincipal tbox
nJ = nonPrincipal box
toAdd = (x:nK) \\ (x' : nJ)
nL = nJ \\ (x : nK)
dir' = mirror dir
tdir' = mirror tdir
-- asumes zc is in the sides of tbox
pickout zc vfill = lookBox zc (unFillAs vfill z)
-- asumes zc is in the sides of tbox
auxsides zc = [ (yd,pickout zc (lookBox yd box)) | yd <- allDirs nL ]
fill v b = Kan Fill v b
-- -- Composition (ie., the face of fill which is created)
com :: Val -> Box Val -> Val
com u box | isNeutralFill u box = VComN u box
com vid@VId{} box@(Box dir i _ _) = fill vid box `face` (i,dir)
com vsigma@VSigma{} box@(Box dir i _ _) = fill vsigma box `face` (i,dir)
com veq@VEquivEq{} box@(Box dir i _ _) = fill veq box `face` (i,dir)
com u@(Kan Com VU _) box@(Box dir i _ _) = fill u box `face` (i,dir)
com u@(Kan Fill VU _) box@(Box dir i _ _) = fill u box `face` (i,dir)
com ter@Ter{} box@(Box dir i _ _) = fill ter box `face` (i,dir)
com v box = Kan Com v box
conv :: Int -> Val -> Val -> Bool
conv k VU VU = True
conv k (Ter (Lam x u) e) (Ter (Lam x' u') e') =
let v = mkVar k $ support (e, e')
in conv (k+1) (eval (oPair e (x,v)) u) (eval (oPair e' (x',v)) u')
conv k (Ter (Lam x u) e) u' =
let v = mkVar k $ support (e,u')
in conv (k+1) (eval (oPair e (x,v)) u) (app u' v)
conv k u' (Ter (Lam x u) e) =
let v = mkVar k $ support (u',e)
in conv (k+1) (app u' v) (eval (oPair e (x,v)) u)
conv k (Ter (Split p _) e) (Ter (Split p' _) e') =
(p == p') && convEnv k e e'
conv k (Ter (Sum p _) e) (Ter (Sum p' _) e') =
(p == p') && convEnv k e e'
conv k (Ter (PN (Undef p)) e) (Ter (PN (Undef p')) e') =
(p == p') && convEnv k e e'
conv k (VPi u v) (VPi u' v') =
let w = mkVar k $ support [u,u',v,v']
in conv k u u' && conv (k+1) (app v w) (app v' w)
conv k (VSigma u v) (VSigma u' v') =
let w = mkVar k $ support [u,u',v,v']
in conv k u u' && conv (k+1) (app v w) (app v' w)
conv k (VId a u v) (VId a' u' v') = and [conv k a a', conv k u u', conv k v v']
conv k (Path x u) (Path x' u') = conv k (swap u x z) (swap u' x' z)
where z = fresh (u,u')
conv k (Path x u) p' = conv k (swap u x z) (appName p' z)
where z = fresh u
conv k p (Path x' u') = conv k (appName p z) (swap u' x' z)
where z = fresh u'
-- conv k (VExt x b f g p) (VExt x' b' f' g' p') =
-- andM [x <==> x', conv k b b', conv k f f', conv k g g', conv k p p']
conv k (VHExt x b f g p) (VHExt x' b' f' g' p') =
and [x == x', conv k b b', conv k f f', conv k g g', conv k p p']
conv k (VFst u) (VFst u') = conv k u u'
conv k (VSnd u) (VSnd u') = conv k u u'
conv k (VInh u) (VInh u') = conv k u u'
conv k (VInc u) (VInc u') = conv k u u'
conv k (VSquash x u v) (VSquash x' u' v') =
and [x == x', conv k u u', conv k v v']
conv k (VCon c us) (VCon c' us') = (c == c') && and (zipWith (conv k) us us')
conv k (Kan Fill v box) (Kan Fill v' box') =
conv k v v' && convBox k box box'
conv k (Kan Com v box) (Kan Com v' box') =
and [conv k (swap v x y) (swap v' x' y),
convBox k (swap box x y) (swap box' x' y)]
where y = fresh ((v,v'),(box,box'))
(x,x') = (pname box, pname box')
conv k (VComN v box) (VComN v' box') =
and [conv k (swap v x y) (swap v' x' y),
convBox k (swap box x y) (swap box' x' y)]
where y = fresh ((v,v'),(box,box'))
(x,x') = (pname box, pname box')
conv k (VFillN v box) (VFillN v' box') =
and [conv k v v', convBox k (swap box x y) (swap box' x' y)]
where y = fresh ((v,v'),(box,box'))
(x,x') = (pname box, pname box')
conv k (VEquivEq x a b f s t) (VEquivEq x' a' b' f' s' t') =
and [x == x', conv k a a', conv k b b',
conv k f f', conv k s s', conv k t t']
conv k (VEquivSquare x y a s t) (VEquivSquare x' y' a' s' t') =
and [x == x', y == y', conv k a a', conv k s s', conv k t t']
conv k (VPair x u v) (VPair x' u' v') =
and [x == x', conv k u u', conv k v v']
conv k (VSquare x y u) (VSquare x' y' u') =
and [x == x', y == y', conv k u u']
conv k (VComp box) (VComp box') =
convBox k (swap box x y) (swap box' x' y)
where y = fresh (box,box')
(x,x') = (pname box, pname box')
conv k (VFill x box) (VFill x' box') =
convBox k (swap box x y) (swap box' x' y)
where y = fresh (box,box')
conv k (VSPair u v) (VSPair u' v') = conv k u u' && conv k v v'
conv k (VSPair u v) w =
conv k u (fstSVal w) && conv k v (sndSVal w)
conv k w (VSPair u v) =
conv k (fstSVal w) u && conv k (sndSVal w) v
conv k (VApp u v) (VApp u' v') = conv k u u' && conv k v v'
conv k (VAppName u x) (VAppName u' x') = conv k u u' && (x == x')
conv k (VSplit u v) (VSplit u' v') = conv k u u' && conv k v v'
conv k (VVar x d) (VVar x' d') = (x == x') && (d == d')
conv k (VInhRec b p phi v) (VInhRec b' p' phi' v') =
and [conv k b b', conv k p p', conv k phi phi', conv k v v']
conv k VCircle VCircle = True
conv k VBase VBase = True
conv k (VLoop x) (VLoop y) = x == y
conv k (VCircleRec f b l v) (VCircleRec f' b' l' v') =
and [conv k f f', conv k b b', conv k l l', conv k v v']
conv k VI VI = True
conv k VI0 VI0 = True
conv k VI1 VI1 = True
conv k (VLine x) (VLine y) = x == y
conv k (VIntRec f s e l u) (VIntRec f' s' e' l' u') =
and [conv k f f', conv k s s', conv k e e', conv k l l', conv k u u']
conv k _ _ = False
convBox :: Int -> Box Val -> Box Val -> Bool
convBox k box@(Box d pn _ ss) box'@(Box d' pn' _ ss') =
if (d == d') && (pn == pn') && (sort np == sort np')
then and [ conv k (lookBox s box) (lookBox s box')
| s <- defBox box ]
else False
where (np, np') = (nonPrincipal box, nonPrincipal box')
convEnv :: Int -> OEnv -> OEnv -> Bool
convEnv k e e' = and $ zipWith (conv k) (valOfOEnv e) (valOfOEnv e')