-
Notifications
You must be signed in to change notification settings - Fork 350
/
hyb_vector.hpp
901 lines (775 loc) · 35.8 KB
/
hyb_vector.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/*
* Copyright (c) 2014 Juha Karkkainen, Dominik Kempa and Simon J. Puglisi
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Simon Gog made the following changes:
* - replace std::vectors by int_vectors
* - add support for rank0
* - added naive implementation of method get_int
* - TODO: added a naive implementation of select
*/
#ifndef INCLUDED_SDSL_HYB_VECTOR
#define INCLUDED_SDSL_HYB_VECTOR
#include "int_vector.hpp"
#include "util.hpp"
#include "iterators.hpp"
#include "io.hpp"
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <iostream>
namespace sdsl
{
// Needed for friend declarations.
template<uint8_t t_b = 1, uint32_t k_sb_rate = 16> class rank_support_hyb;
template<uint8_t t_b = 1, uint32_t k_sb_rate = 16> class select_support_hyb;
//! A hybrid-encoded compressed bitvector representation
/*!
* \tparam k_sblock_rate Superblock rate (number of blocks inside superblock)
*
* References:
* - Juha Karkkainen, Dominik Kempa and Simon J. Puglisi.
* Hybrid Compression of Bitvectors for the FM-Index.
* DCC 2014.
*/
template<uint32_t k_sblock_rate = 16>
class hyb_vector
{
public:
typedef bit_vector::size_type size_type;
typedef bit_vector::value_type value_type;
typedef bit_vector::difference_type difference_type;
typedef random_access_const_iterator<hyb_vector> iterator;
typedef rank_support_hyb<1, k_sblock_rate> rank_1_type;
typedef rank_support_hyb<0, k_sblock_rate> rank_0_type;
typedef select_support_hyb<1, k_sblock_rate> select_1_type;
typedef select_support_hyb<0, k_sblock_rate> select_0_type;
friend class rank_support_hyb<1, k_sblock_rate>;
friend class rank_support_hyb<0, k_sblock_rate>;
friend class select_support_hyb<1, k_sblock_rate>;
friend class select_support_hyb<0, k_sblock_rate>;
private:
static const uint32_t k_block_size;
static const uint32_t k_block_bytes;
static const uint32_t k_sblock_header_size;
static const uint32_t k_sblock_size;
static const uint32_t k_hblock_rate;
size_type m_size = 0; // original bitvector size
int_vector<8> m_trunk; // body of encoded blocks
int_vector<8> m_sblock_header; // sblock headers
int_vector<64> m_hblock_header; // hblock headers
void copy(const hyb_vector& hybrid)
{
m_size = hybrid.m_size;
m_trunk = hybrid.m_trunk;
m_sblock_header = hybrid.m_sblock_header;
m_hblock_header = hybrid.m_hblock_header;
}
public:
//! Default constructor
hyb_vector() = default;
//! Copy constructor
hyb_vector(const hyb_vector& hybrid)
{
copy(hybrid);
}
//! Move constructor
hyb_vector(hyb_vector&& hybrid)
: m_size(std::move(hybrid.m_size)),
m_trunk(std::move(hybrid.m_trunk)),
m_sblock_header(std::move(hybrid.m_sblock_header)),
m_hblock_header(std::move(hybrid.m_hblock_header)) {}
//! Constructor
hyb_vector(const bit_vector& bv)
{
m_size = bv.size();
// Compute the number of blocks.
size_type n_blocks = (m_size + k_block_size - 1) / k_block_size;
size_type n_sblocks = (n_blocks + k_sblock_rate - 1) / k_sblock_rate;
size_type n_hblocks = (n_blocks + k_hblock_rate - 1) / k_hblock_rate;
size_type trunk_size = 0;
// runs_lookup[i] = number of runs - 1 in the binary encoding of i.
int_vector<8> runs_lookup(65536,0);
runs_lookup[0] = 0;
for (uint32_t i = 1; i < 65536; ++i) {
runs_lookup[i] = runs_lookup[i >> 1];
if (i >= 32768) --runs_lookup[i];
if ((i & 1) != ((i >> 1) & 1)) ++runs_lookup[i];
}
// Compute optimal encoding for each block.
const uint64_t* bv_ptr = bv.data();
for (size_type block_id = 0; block_id < n_blocks; ++block_id) {
size_type block_beg = block_id * k_block_size;
size_type block_end = block_beg + k_block_size;
uint32_t ones = 0;
uint32_t runs = 0;
if (block_end <= m_size) {
// Count the number of ones, fast.
const uint64_t* ptr64 = bv_ptr;
for (uint8_t i = 0; i < 4; ++i) ones += bits::cnt(*ptr64++);
// Count the number of runs, fast.
ptr64 = bv_ptr;
for (uint8_t i = 0; i < 4; ++i) {
// Count changes of bits inside 16-bit words of *ptr64.
for (uint8_t j = 0; j < 4; ++j) runs += runs_lookup[((*ptr64)>>(16*j))&0xffff];
// Count changes of bits between 16-bit words of *ptr64.
for (uint8_t j = 0; j < 3; ++j) runs += ((((*ptr64)>>(16*j+15))&1) ^ (((*ptr64)>>(16*j+16))&1));
++ptr64;
}
// Count changes of bits between 64-bit words.
ptr64 = bv_ptr;
for (uint8_t i = 0; i < 3; ++i) {
runs += ((((*ptr64)>>63)&1) ^ ((*(ptr64 + 1))&1));
++ptr64;
}
++runs;
} else {
// Count number of ones and runs, slow.
uint8_t prevbit = 2;
for (size_type i = block_beg; i < block_end; ++i) {
uint8_t bit = (i < m_size ? bv[i] : 0);
if (bit == 1) ++ones;
if (bit != prevbit) ++runs;
prevbit = bit;
}
}
// Choose best encoding.
uint32_t minority_enc_size = std::min(ones, k_block_size - ones);
uint32_t runs_enc_size = (uint32_t)std::max(0, (int32_t)runs - 2);
uint32_t best_enc_size = std::min(minority_enc_size, runs_enc_size);
best_enc_size = std::min(best_enc_size, k_block_bytes);
// Update the answer.
trunk_size += best_enc_size;
bv_ptr += k_block_size / 64;
}
// Allocate the memory.
m_sblock_header = int_vector<8>(n_sblocks * k_sblock_header_size, 0);
m_hblock_header = int_vector<64>(n_hblocks * 2, 0);
m_trunk = int_vector<8>(trunk_size, 0);
// The actual encoding follows.
size_type tot_rank = 0; // stores current rank value
size_type sblock_ones = 0; // number of 1s inside superblock
size_type trunk_ptr = 0;
// Process blocks left to right.
bv_ptr = bv.data();
for (size_type block_id = 0; block_id < n_blocks; ++block_id) {
size_type block_beg = block_id * k_block_size;
size_type block_end = block_beg + k_block_size;
size_type sblock_id = block_id / k_sblock_rate;
size_type hblock_id = block_id / k_hblock_rate;
// Update hblock header.
if (!(block_id % k_hblock_rate)) {
m_hblock_header[2 * hblock_id] = trunk_ptr;
m_hblock_header[2 * hblock_id + 1] = tot_rank;
}
// Update sblock header.
if (!(block_id % k_sblock_rate)) {
uint32_t* ptr = (uint32_t*)(((uint8_t*)m_sblock_header.data()) + k_sblock_header_size * sblock_id);
*ptr++ = trunk_ptr - m_hblock_header[2 * hblock_id];
*ptr = tot_rank - m_hblock_header[2 * hblock_id + 1];
// If the sblock is uniform, flip the bit.
if (sblock_id && (!sblock_ones || sblock_ones == k_sblock_size)) {
ptr = (uint32_t*)(((uint8_t*)m_sblock_header.data()) + k_sblock_header_size * (sblock_id - 1));
*ptr |= 0x80000000;
}
// Reset the number of ones in sblock.
sblock_ones = 0;
}
uint32_t ones = 0;
uint32_t runs = 0;
// Compute the number of 1-bits and runs inside current block.
if (block_end <= m_size) {
// Count the number of ones, fast.
const uint64_t* ptr64 = bv_ptr;
for (uint8_t i = 0; i < 4; ++i) ones += bits::cnt(*ptr64++);
// Count the number of runs, fast.
ptr64 = bv_ptr;
for (uint8_t i = 0; i < 4; ++i) {
for (uint8_t j = 0; j < 4; ++j) runs += runs_lookup[((*ptr64)>>(16*j))&0xffff];
for (uint8_t j = 0; j < 3; ++j) runs += ((((*ptr64)>>(16*j+15))&1) ^ (((*ptr64)>>(16*j+16))&1));
++ptr64;
}
ptr64 = bv_ptr;
for (uint8_t i = 0; i < 3; ++i) {
runs += ((((*ptr64)>>63)&1) ^ ((*(ptr64 + 1))&1));
++ptr64;
}
++runs;
} else {
// Count number of ones and runs, slow.
uint8_t prevbit = 2;
for (size_type i = block_beg; i < block_end; ++i) {
uint8_t bit = (i < m_size ? bv[i] : 0);
if (bit == 1) ++ones;
if (bit != prevbit) ++runs;
prevbit = bit;
}
}
uint32_t zeros = k_block_size - ones;
// Store block popcount.
uint16_t* header_ptr16 = (uint16_t*)(((uint8_t*)m_sblock_header.data()) +
sblock_id * k_sblock_header_size + 8 + (block_id % k_sblock_rate) * 2);
(*header_ptr16) = ones;
if (ones == k_block_size)
(*header_ptr16) |= 0x200;
if (0 < ones && ones < k_block_size) { // non uniform block
uint32_t minority_enc_size = std::min(ones, zeros);
uint32_t runs_enc_size = (uint32_t)std::max(0, (int32_t)runs - 2);
uint32_t best_enc_size = std::min(minority_enc_size, runs_enc_size);
if (k_block_bytes <= best_enc_size) {
// Use plain encoding.
(*header_ptr16) |= (k_block_bytes << 10);
// Copy original 256 bits from bv into trunk.
if (block_end <= m_size) {
for (uint8_t i = 0; i < 4; ++i) {
*((uint64_t*)(((uint8_t*)m_trunk.data()) + trunk_ptr)) = *(bv_ptr + i);
trunk_ptr += 8;
}
} else {
for (size_type i = block_beg; i < block_end; i += 64) {
uint64_t w = 0;
for (size_type j = i; j < std::min(i + 64, block_end); ++j) {
uint8_t bit = (j < m_size ? bv[j] : 0);
if (bit) w |= ((uint64_t)1 << (j - i));
}
*((uint64_t*)(((uint8_t*)m_trunk.data()) + trunk_ptr)) = w;
trunk_ptr += 8;
}
}
} else {
if (runs_enc_size < minority_enc_size) {
// Use runs encoding.
(*header_ptr16) |= (runs_enc_size << 10);
(*header_ptr16) |= (bv[block_beg] << 9);
if (block_end <= m_size) {
// Find run ends, fast.
uint32_t runid = 0;
const uint64_t* ptr64 = bv_ptr;
uint64_t w = 0;
for (uint8_t i = 0; runid < runs_enc_size && i < 4; ++i) {
// Check if run end aligns with the end of the 64-bit word.
if (i > 0 && (w & 1) != ((*ptr64) & 1))
m_trunk[trunk_ptr + runid++] = 64 * i - 1;
w = (*ptr64++);
for (uint8_t j = 0; runid < runs_enc_size && j < 63; ++j) {
if ((w & 1) != ((w >> 1) & 1))
m_trunk[trunk_ptr + runid++] = j + i * 64;
w >>= 1;
}
}
trunk_ptr += runid;
} else {
// Find run ends, slow.
uint8_t prevbit = 2;
uint32_t runid = 0;
for (size_type i = block_beg; runid < runs_enc_size; ++i) {
uint8_t bit = (i < m_size ? bv[i] : 0);
if (bit != prevbit && i != block_beg)
m_trunk[trunk_ptr + runid++] = (i - block_beg - 1);
prevbit = bit;
}
trunk_ptr += runid;
}
} else {
// Use minority encoding.
// Update sblock header.
(*header_ptr16) |= (minority_enc_size << 10);
if (ones < zeros)(*header_ptr16) |= 0x200;
uint8_t keybit = (ones < zeros);
// Find positions of 1-bits, fast.
if (block_end <= m_size) {
const uint64_t* ptr64 = bv_ptr;
for (uint8_t i = 0; i < 4; ++i) {
uint64_t w = (*ptr64++);
for (uint8_t j = 0; j < 64; ++j) {
if ((w & 1) == keybit)
m_trunk[trunk_ptr++] = j + 64 * i;
w >>= 1;
}
}
} else {
for (size_type i = block_beg; i < block_end; ++i) {
uint8_t bit = (i < m_size ? bv[i] : 0);
if (bit == keybit)
m_trunk[trunk_ptr++] = i - block_beg;
}
}
}
}
}
// Update global rank.
tot_rank += ones;
sblock_ones += ones;
bv_ptr += k_block_size / 64;
}
}
private:
//! Given i returns bv[i - 1].
value_type access0(size_type i) const
{
assert(i > 0);
assert(i <= m_size);
size_type block_id = (i - 1) / k_block_size;
size_type sblock_id = block_id / k_sblock_rate;
size_type hblock_id = block_id / k_hblock_rate;
size_type trunk_base = m_hblock_header[2 * hblock_id];
uint32_t local_i = i - block_id * k_block_size;
// Read superblock header.
const uint8_t* header_ptr8 = ((const uint8_t*)m_sblock_header.data()) + (sblock_id * k_sblock_header_size);
uint32_t* header_ptr32 = (uint32_t*)header_ptr8;
size_type trunk_ptr = trunk_base + ((*header_ptr32) & 0x3fffffff);
header_ptr8 += 8;
uint16_t* header_ptr16 = (uint16_t*)header_ptr8;
// Uniform superblock optimization.
if ((*header_ptr32) & 0x80000000)
return (value_type)((*(header_ptr8 + 1)) & 0x01);
// Fast forward through preceding blocks in the superblock.
for (size_type j = sblock_id * k_sblock_rate; j != block_id; ++j) {
trunk_ptr += ((*header_ptr16) >> 10); // Update trunk pointer.
++header_ptr16;
}
const uint8_t* trunk_p = ((const uint8_t*)m_trunk.data()) + trunk_ptr;
uint32_t encoding_size = ((*header_ptr16) >> 10);
uint32_t ones = ((*header_ptr16) & 0x1ff);
uint32_t zeros = k_block_size - ones;
// Number of runs <= 2.
uint32_t special_bit = (((*header_ptr16) & 0x200) >> 9);
if (!encoding_size) {
uint32_t first_run_length = special_bit * ones + (1 - special_bit) * zeros;
uint8_t inside_second_run = (first_run_length < local_i);
return (inside_second_run ^ special_bit);
}
// Number of runs > 2.
if (encoding_size < k_block_bytes) {
if (std::min(ones, zeros) == encoding_size) {
// Minority encoding.
uint32_t tot = 0;
while (tot < encoding_size && *trunk_p < local_i) {
++trunk_p;
++tot;
}
uint8_t last_was_majority = ((!tot) || (*(trunk_p - 1) != local_i - 1));
return (last_was_majority ^ special_bit);
}
// Runs encoding.
if (special_bit) {
uint32_t j = 0;
uint32_t acc = 0;
int32_t last = -1;
while (j + 1 < encoding_size && *(trunk_p + 1) < local_i) {
acc += *trunk_p - last; ++trunk_p;
last = *trunk_p; ++trunk_p; j += 2;
}
uint8_t access_i = 0;
if (j + 1 >= encoding_size) {
if (j < encoding_size) { // j == encoding_size - 1
if (local_i <= (uint32_t)(*trunk_p) + 1) access_i = (((int32_t)local_i - last - 1) > 0);
else {
acc += (int32_t)(*trunk_p) - last;
if (ones - acc <= k_block_size - local_i) access_i = 0;
else access_i = 1;
}
} else { // j == encoding_size
if ((int32_t)(ones - acc) < (int32_t)local_i - last - 1) access_i = 0;
else access_i = (((int32_t)local_i - last - 1) > 0);
}
} else {
if ((*trunk_p) < local_i - 1) access_i = 0;
else access_i = (((int32_t)local_i - last - 1) > 0);
}
return access_i;
} else {
uint32_t j = 0;
uint32_t acc = 0;
int32_t last = -1;
while (j + 1 < encoding_size && *(trunk_p + 1) < local_i) {
acc += *trunk_p - last; ++trunk_p;
last = *trunk_p; ++trunk_p; j += 2;
}
uint8_t access_i = 0;
if (j + 1 >= encoding_size) {
if (j < encoding_size) {
if (local_i <= (uint32_t)(*trunk_p) + 1) access_i = (((int32_t)local_i - last - 1) == 0);
else {
acc += (*trunk_p) - last;
if (zeros - acc <= k_block_size - local_i) access_i = 1;
else access_i = 0;
}
} else {
if ((int32_t)(zeros - acc) < (int32_t)local_i - last - 1) access_i = 1;
else access_i = ((local_i - last - 1) == 0);
}
} else {
if ((*trunk_p) < local_i - 1) access_i = 1;
else access_i = (((int32_t)local_i - last - 1) == 0);
}
return access_i;
}
} else {
// plain encoding.
uint64_t* trunk_ptr64 = (uint64_t*)(((uint8_t*)m_trunk.data()) + trunk_ptr);
uint32_t bit;
for (bit = 0; bit + 64 <= local_i; bit += 64) trunk_ptr64++;
uint8_t access_i = 0;
if (bit != local_i) access_i = (((*trunk_ptr64) >> (local_i - bit - 1)) & 1);
else access_i = (((*(trunk_ptr64 - 1)) >> 63) & 1);
return access_i;
}
}
public:
//! Swap method
void swap(hyb_vector& hybrid)
{
if (this != &hybrid) {
std::swap(m_size, hybrid.m_size);
std::swap(m_trunk, hybrid.m_trunk);
std::swap(m_sblock_header, hybrid.m_sblock_header);
std::swap(m_hblock_header, hybrid.m_hblock_header);
}
}
//! Get the integer value of the binary string of length len starting at position idx.
/*! \param idx Starting index of the binary representation of the integer.
* \param len Length of the binary representation of the integer. Default value is 64.
* \returns The integer value of the binary string of length len starting at position idx.
*
* \pre idx+len-1 in [0..size()-1]
* \pre len in [1..64]
*/
uint64_t get_int(size_type idx, const uint8_t len=64) const
{
uint64_t res = 0;
for (size_t i=0; i<len; ++i) {
res <<= 1;
res |= (*this)[idx+len-1-i];
}
return res;
}
//! Accessing the i-th element of the original bitvector
value_type operator[](size_type i) const
{
return access0(i + 1);
}
//! Assignment operator
hyb_vector& operator=(const hyb_vector& hybrid)
{
if (this != &hybrid)
copy(hybrid);
return *this;
}
//! Move assignment operator
hyb_vector& operator=(hyb_vector&& hybrid)
{
swap(hybrid);
return *this;
}
//! Returns the size of the original bitvector
size_type size() const
{
return m_size;
}
//! Serializes the data structure into the given ostream
size_type serialize(std::ostream& out, structure_tree_node* v = nullptr, std::string name = "") const
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += write_member(m_size, out, child, "size");
written_bytes += m_trunk.serialize(out, child, "trunk");
written_bytes += m_sblock_header.serialize(out, child, "sblock_header");
written_bytes += m_hblock_header.serialize(out, child, "hblock_header");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
//! Loads the data structure from the given istream
void load(std::istream& in)
{
read_member(m_size, in);
m_trunk.load(in);
m_sblock_header.load(in);
m_hblock_header.load(in);
}
iterator begin() const
{
return iterator(this, 0);
}
iterator end() const
{
return iterator(this, size());
}
};
template<uint32_t k_sblock_rate> const uint32_t hyb_vector<k_sblock_rate>::k_block_size = 256;
template<uint32_t k_sblock_rate> const uint32_t hyb_vector<k_sblock_rate>::k_block_bytes = 32;
template<uint32_t k_sblock_rate> const uint32_t hyb_vector<k_sblock_rate>::k_sblock_header_size = 8 + 2 * k_sblock_rate;
template<uint32_t k_sblock_rate> const uint32_t hyb_vector<k_sblock_rate>::k_sblock_size = 256 * k_sblock_rate;
template<uint32_t k_sblock_rate> const uint32_t hyb_vector<k_sblock_rate>::k_hblock_rate = (1U << 31) / 256;
template<uint8_t t_bp>
struct rank_result {
typedef bit_vector::size_type size_type;
static size_type adapt(size_type res, size_type)
{
return res;
}
};
template<>
struct rank_result<0> {
typedef bit_vector::size_type size_type;
static size_type adapt(size_type res, size_type i)
{
return i-res;
}
};
//! Rank_support for the hyb_vector class
/*!
* \tparam t_b The bit pattern of size one. (so `0` or `1`)
* \tparam k_sblock_rate Superblock rate (number of blocks inside superblock)
*/
// TODO:
template<uint8_t t_b, uint32_t k_sblock_rate>
class rank_support_hyb
{
public:
typedef hyb_vector<k_sblock_rate> bit_vector_type;
typedef typename bit_vector_type::size_type size_type;
enum { bit_pat = t_b };
enum { bit_pat_len = (uint8_t)1 };
private:
const bit_vector_type* m_v;
public:
//! Standard constructor
explicit rank_support_hyb(const bit_vector_type* v = nullptr)
{
set_vector(v);
}
//! Answers rank queries
const size_type rank(size_type i) const
{
assert(m_v != nullptr);
assert(i <= m_v->size());
// Handle easy case.
if (i <= 0) return 0;
size_type block_id = (i - 1) / bit_vector_type::k_block_size;
size_type sblock_id = block_id / k_sblock_rate;
size_type hblock_id = block_id / bit_vector_type::k_hblock_rate;
size_type trunk_base = m_v->m_hblock_header[2 * hblock_id];
size_type hblock_rank = m_v->m_hblock_header[2 * hblock_id + 1];
uint32_t local_i = i - block_id * bit_vector_type::k_block_size;
// Read superblock header.
const uint8_t* header_ptr8 = ((const uint8_t*)(m_v->m_sblock_header.data())) + (sblock_id * bit_vector_type::k_sblock_header_size);
uint32_t* header_ptr32 = (uint32_t*)header_ptr8;
size_type trunk_ptr = trunk_base + ((*header_ptr32) & 0x3fffffff);
size_type sblock_rank = *(header_ptr32 + 1);
header_ptr8 += 8;
uint16_t* header_ptr16 = (uint16_t*)header_ptr8;
// Uniform superblock optimization.
if ((*header_ptr32) & 0x80000000) {
return rank_result<t_b>::adapt(
hblock_rank + sblock_rank +
((*(header_ptr8 + 1)) & 0x01) * (i - sblock_id * bit_vector_type::k_sblock_size),
i);
}
// Fast forward through preceding blocks in the superblock.
size_type block_rank = 0;
for (size_type j = sblock_id * k_sblock_rate; j != block_id; ++j) {
trunk_ptr += ((*header_ptr16) >> 10); // Update trunk pointer.
block_rank += ((*header_ptr16) & 0x1ff); // Add 1s in the block.
++header_ptr16;
}
const uint8_t* trunk_p = ((uint8_t*)m_v->m_trunk.data()) + trunk_ptr;
uint32_t encoding_size = ((*header_ptr16) >> 10);
uint32_t ones = ((*header_ptr16) & 0x1ff);
uint32_t zeros = bit_vector_type::k_block_size - ones;
// Number of runs <= 2.
uint32_t special_bit = (((*header_ptr16) & 0x200) >> 9);
if (!encoding_size) {
uint32_t first_run_length = special_bit * ones + (1 - special_bit) * zeros;
uint32_t local_rank = std::min(local_i, first_run_length);
return rank_result<t_b>::adapt(
hblock_rank + sblock_rank + block_rank +
(special_bit * local_rank + (1 - special_bit) * (local_i - local_rank)),
i);
}
// Number of runs > 2.
if (encoding_size < bit_vector_type::k_block_bytes) {
if (std::min(ones, zeros) == encoding_size) {
// Minority encoding.
uint32_t tot = 0;
while (tot < encoding_size && (*trunk_p++) < local_i) ++tot;
return rank_result<t_b>::adapt(
hblock_rank + sblock_rank + block_rank +
special_bit * tot + (1 - special_bit) * (local_i - tot),
i);
}
// Runs encoding.
if (special_bit) {
uint32_t j = 0;
uint32_t acc = 0;
int32_t last = -1;
while (j + 1 < encoding_size && *(trunk_p + 1) < local_i) {
acc += *trunk_p - last; ++trunk_p;
last = *trunk_p; ++trunk_p; j += 2;
}
if (j + 1 >= encoding_size) {
if (j < encoding_size) {
if (*trunk_p >= local_i) acc += local_i - last - 1;
else {
acc += (*trunk_p) - last;
acc += (ones - acc) - std::min(ones - acc, bit_vector_type::k_block_size - local_i);
}
} else acc += std::min(ones - acc, local_i - last - 1);
} else acc += std::min((int32_t)(*trunk_p), (int32_t)local_i - 1) - last;
return rank_result<t_b>::adapt(hblock_rank + sblock_rank + block_rank + acc,i);
} else {
uint32_t j = 0;
uint32_t acc = 0;
int32_t last = -1;
while (j + 1 < encoding_size && *(trunk_p + 1) < local_i) {
acc += *trunk_p - last; ++trunk_p;
last = *trunk_p; ++trunk_p; j += 2;
}
if (j + 1 >= encoding_size) {
if (j < encoding_size) {
if (*trunk_p >= local_i) acc += local_i - last - 1;
else {
acc += (*trunk_p) - last;
acc += (zeros - acc) - std::min(zeros - acc, bit_vector_type::k_block_size - local_i);
}
} else acc += std::min(zeros - acc, local_i - last - 1);
} else acc += std::min((int32_t)(*trunk_p), (int32_t)local_i - 1) - last;
return rank_result<t_b>::adapt(hblock_rank + sblock_rank + block_rank + (local_i - acc),i);
}
} else {
// plain encoding.
uint64_t* trunk_ptr64 = (uint64_t*)(((uint8_t*)m_v->m_trunk.data()) + trunk_ptr);
uint32_t bit;
for (bit = 0; bit + 64 <= local_i; bit += 64)
block_rank += bits::cnt(*trunk_ptr64++);
if (bit != local_i)
block_rank += bits::cnt((*trunk_ptr64) & (((uint64_t)1 << (local_i - bit)) - 1));
return rank_result<t_b>::adapt(hblock_rank + sblock_rank + block_rank, i);
}
}
//! Shorthand for rank(i)
const size_type operator()(size_type i) const
{
return rank(i);
}
//! Return the size of the original vector
const size_type size() const
{
return m_v->size();
}
//! Set the supported vector
void set_vector(const bit_vector_type* v = nullptr)
{
m_v = v;
}
//! Assignment operator
rank_support_hyb& operator=(const rank_support_hyb& rs)
{
if (this != &rs) {
set_vector(rs.m_v);
}
return *this;
}
//! Swap method
void swap(rank_support_hyb&) {}
//! Load the data structure from a stream and set the supported vector
void load(std::istream&, const bit_vector_type* v = nullptr)
{
set_vector(v);
}
//! Serializes the data structure into a stream
size_type serialize(std::ostream&, structure_tree_node* v = nullptr, std::string name = "") const
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
structure_tree::add_size(child, 0);
return 0;
}
};
//! Select support for the hyb_vector class
/*!
* \tparam t_b The bit pattern of size one. (so `0` or `1`)
* \tparam k_sblock_rate Superblock rate (number of blocks inside superblock)
* TODO: implement select queries, currently this is dummy class.
*/
template<uint8_t t_b, uint32_t k_sblock_rate>
class select_support_hyb
{
public:
typedef hyb_vector<k_sblock_rate> bit_vector_type;
typedef typename bit_vector_type::size_type size_type;
enum { bit_pat = t_b };
enum { bit_pat_len = (uint8_t)1 };
private:
const bit_vector_type* m_v;
public:
//! Standard constructor
explicit select_support_hyb(const bit_vector_type* v = nullptr)
{
set_vector(v);
}
//! Answers select queries
size_type select(size_type) const
{
fprintf(stderr, "\nhyb_vector: select queries are not currently supported\n");
std::exit(EXIT_FAILURE);
}
//! Shorthand for select(i)
const size_type operator()(size_type i) const
{
return select(i);
}
//! Return the size of the original vector
const size_type size() const
{
return m_v->size();
}
//! Set the supported vector
void set_vector(const bit_vector_type* v = nullptr)
{
m_v = v;
}
//! Assignment operator
select_support_hyb& operator=(const select_support_hyb& rs)
{
if (this != &rs) {
set_vector(rs.m_v);
}
return *this;
}
//! Swap method
void swap(select_support_hyb&) {}
//! Load the data structure from a stream and set the supported vector
void load(std::istream&, const bit_vector_type* v = nullptr)
{
set_vector(v);
}
//! Serializes the data structure into a stream
size_type serialize(std::ostream&, structure_tree_node* v = nullptr, std::string name = "") const
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
structure_tree::add_size(child, 0);
return 0;
}
};
} // end namespace sdsl
#endif // INCLUDED_SDSL_HYB_VECTOR