-
Notifications
You must be signed in to change notification settings - Fork 350
/
wt_ap.hpp
416 lines (377 loc) · 17.2 KB
/
wt_ap.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/* sdsl - succinct data structures library
Copyright (C) 2014 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file wt_ap.hpp
\brief wt_ap.hpp contains a space-efficient class to support select,
rank and access on inputs with potentially large alphabets.
\author Johannes Bader, Simon Gog
*/
#ifndef INCLUDED_SDSL_WT_AP
#define INCLUDED_SDSL_WT_AP
#include <sdsl/bit_vectors.hpp>
#include <sdsl/int_vector.hpp>
#include <sdsl/vectors.hpp>
//! Namespace for the succinct data structure library.
namespace sdsl
{
//! A wavelet tree class for integer sequences.
/*!
* \par Space complexity
* \f$\order{n} (H_0 + 1)\f$ bits, where \f$n\f$ is the size of the vector the wavelet tree was build for.1
*
* \tparam t_wt_byte Type of the wavelet tree used for class representation.
* \tparam t_wt_int Type of the wavelet tree used for class offset representation.
*
* \par References
* [1] J. Barbay, F. Claude, T. Gagie, G. Navarro and Y. Nekrich:
* ,,Efficient Fully-Compressed Sequence Representations''
*
* @ingroup wt
*/
template<class t_wt_byte = wt_huff<bit_vector, rank_support_v5<>>, class t_wt_int = wm_int<>>
class wt_ap
{
static_assert(std::is_same<typename index_tag<t_wt_byte>::type, wt_tag>::value,
"First template argument has to be a wavelet tree.");
static_assert(std::is_same<typename index_tag<t_wt_int>::type, wt_tag>::value,
"Second template argument has to be a wavelet tree.");
public:
typedef int_vector<>::size_type size_type;
typedef int_vector<>::value_type value_type;
typedef random_access_const_iterator<wt_ap> const_iterator;
typedef const_iterator iterator;
typedef t_wt_byte wt_byte_type;
typedef t_wt_int wt_int_type;
typedef wt_tag index_category;
typedef int_alphabet_tag alphabet_category;
enum {lex_ordered=0};
protected:
size_type m_size = 0;
value_type m_sigma = 0; //<- \f$ |\Sigma| \f$
value_type m_singleton_class_cnt = 0;
value_type m_class_cnt = 0;
wt_byte_type m_char2class;
wt_byte_type m_class;
std::vector<wt_int_type> m_offset;
void copy(const wt_ap& wt)
{
m_size = wt.m_size;
m_sigma = wt.m_sigma;
m_singleton_class_cnt = wt.m_singleton_class_cnt;
m_class_cnt = wt.m_class_cnt;
m_char2class = wt.m_char2class;
m_class = wt.m_class;
m_offset = wt.m_offset;
}
private:
// retrieves a character's class and offset - if the character exists in the text
inline std::tuple<bool, value_type, value_type> try_get_char_class_offset(value_type c)const
{
if (c >= m_char2class.size()) { // c is greater than any symbol in text
return std::make_tuple(false, 0, 0);
}
auto offset_class = m_char2class.inverse_select(c);
if (offset_class.second == m_class_cnt) { // c never occurs in text
return std::make_tuple(false, 0, 0);
}
return std::make_tuple(true, offset_class.second, offset_class.first);
}
public:
const size_type& sigma = m_sigma;
//! Default constructor
wt_ap() {}
//! Semi-external constructor
/*! \param buf File buffer of the int_vector for which the wt_ap should be build.
* \param size Size of the prefix of v, which should be indexed.
*/
template<uint8_t int_width>
wt_ap(int_vector_buffer<int_width>& buf, size_type size) : m_size(size)
{
if (buf.size() < m_size) {
throw std::logic_error("n="+util::to_string(buf.size())+" < "+util::to_string(m_size)+"=m_size");
return;
}
const uint8_t wt_byte_width = wt_byte_type::alphabet_category::WIDTH;
const uint8_t wt_int_width = wt_int_type::alphabet_category::WIDTH;
// calculate effective sigma and character frequencies
value_type max_symbol = 0;
std::vector<std::pair<size_type, value_type>> char_freq;
value_type pseudo_entries = 0;
{
auto event = memory_monitor::event("char freq");
for (size_type i=0; i < m_size; ++i) {
auto element = buf[i];
while (element >= max_symbol) {
char_freq.emplace_back(0, max_symbol);
max_symbol++;
pseudo_entries++;
}
if (char_freq[element].first == 0) {
pseudo_entries--;
}
char_freq[element].first++;
}
std::sort(char_freq.rbegin(), char_freq.rend());
m_sigma = max_symbol - pseudo_entries;
}
m_singleton_class_cnt = std::min(max_symbol, (value_type)bits::hi(m_sigma));
m_class_cnt = bits::hi(m_sigma - m_singleton_class_cnt + 1) + m_singleton_class_cnt;
std::vector<std::pair<std::string, int_vector_buffer<wt_int_width>>> temp_file_offset_buffers;
// assign character classes
int_vector<wt_byte_width> m_char2class_buffer(max_symbol, m_class_cnt, bits::hi(m_class_cnt+1)+1);
for (value_type i=0; i < m_singleton_class_cnt; ++i) {
m_char2class_buffer[char_freq[i].second] = i;
}
value_type current_symbol = m_singleton_class_cnt;
value_type class_size = 1;
{
auto event = memory_monitor::event("char2class");
for (value_type i=m_singleton_class_cnt; i < m_class_cnt; ++i) {
class_size <<= 1;
value_type offset=0;
for (; offset < class_size && current_symbol < m_sigma; ++offset, ++current_symbol) {
m_char2class_buffer[char_freq[current_symbol].second] = i;
}
std::string temp_file_offset = buf.filename()
+ "_wt_ap_offset_"
+ util::to_string(i-m_singleton_class_cnt)
+ "_" + util::to_string(util::pid())
+ "_" + util::to_string(util::id());
temp_file_offset_buffers.emplace_back(
temp_file_offset,
int_vector_buffer<wt_int_width>(temp_file_offset, std::ios::out, 1024*1024, bits::hi(offset)+1));
}
char_freq.clear();
construct_im(m_char2class, m_char2class_buffer);
}
// calculate text-order classes and offsets
std::string temp_file_class = buf.filename()
+ "_wt_ap_class_"
+ util::to_string(util::pid())
+ "_" + util::to_string(util::id());
int_vector_buffer<wt_byte_width> class_buffer(temp_file_class, std::ios::out, 1024*1024, bits::hi(m_class_cnt)+1);
{
auto event = memory_monitor::event("write class and offset");
for (size_type i=0; i < m_size; ++i) {
value_type ch = buf[i];
value_type cl = m_char2class_buffer[ch];
class_buffer.push_back(cl);
if (cl >= m_singleton_class_cnt) {
value_type offset = m_char2class.rank(ch, cl);
cl -= m_singleton_class_cnt;
temp_file_offset_buffers[cl].second.push_back(offset);
}
}
class_buffer.close();
}
{
auto event = memory_monitor::event("class WT");
int_vector_buffer<wt_byte_width> class_buffer(temp_file_class);
m_class = wt_byte_type(class_buffer, class_buffer.size());
}
sdsl::remove(temp_file_class);
{
auto event = memory_monitor::event("offset WTs");
m_offset.resize(m_class_cnt-m_singleton_class_cnt);
for (value_type i=0; i < m_class_cnt-m_singleton_class_cnt; ++i) {
auto& temp_file_offset_buffer = temp_file_offset_buffers[i];
temp_file_offset_buffer.second.close();
{
int_vector_buffer<wt_int_width> offset_buffer(temp_file_offset_buffer.first);
m_offset[i] = wt_int_type(offset_buffer, offset_buffer.size());
}
sdsl::remove(temp_file_offset_buffer.first);
}
}
}
//! Copy constructor
wt_ap(const wt_ap& wt)
{
copy(wt);
}
//! Copy constructor
wt_ap(wt_ap&& wt)
{
*this = std::move(wt);
}
//! Assignment operator
wt_ap& operator=(const wt_ap& wt)
{
if (this != &wt) {
copy(wt);
}
return *this;
}
//! Assignment move operator
wt_ap& operator=(wt_ap&& wt)
{
if (this != &wt) {
m_size = wt.m_size;
m_sigma = wt.m_sigma;
m_singleton_class_cnt = wt.m_singleton_class_cnt;
m_class_cnt = wt.m_class_cnt;
m_char2class = std::move(wt.m_char2class);
m_class = std::move(wt.m_class);
m_offset = std::move(wt.m_offset);
}
return *this;
}
//! Swap operator
void swap(wt_ap& wt)
{
if (this != &wt) {
std::swap(m_size, wt.m_size);
std::swap(m_sigma, wt.m_sigma);
std::swap(m_singleton_class_cnt, wt.m_singleton_class_cnt);
std::swap(m_class_cnt, wt.m_class_cnt);
m_char2class.swap(wt.m_char2class);
m_class.swap(wt.m_class);
std::swap(m_offset, wt.m_offset);
}
}
//! Returns the size of the original vector.
size_type size()const
{
return m_size;
}
//! Returns whether the wavelet tree contains no data.
bool empty()const
{
return m_size == 0;
}
//! Recovers the i-th symbol of the original vector.
/*! \param i The index of the symbol in the original vector.
* \returns The i-th symbol of the original vector.
* \par Worst case time complexity
* \f$ \Order{\log \log |\Sigma|} \f$
* \par Average case time complexity
* \f$ \Order{\log H_0} \f$
* \par Precondition
* \f$ i < size() \f$
*/
value_type operator[](size_type i)const
{
assert(i < size());
auto textoffset_class = m_class.inverse_select(i);
auto cl = textoffset_class.second;
value_type offset = cl < m_singleton_class_cnt
? 0
: m_offset[cl-m_singleton_class_cnt][textoffset_class.first];
return m_char2class.select(offset+1, cl);
};
//! Calculates how many symbols c are in the prefix [0..i-1] of the supported vector.
/*!
* \param i The exclusive index of the prefix range [0..i-1], so \f$i\in[0..size()]\f$.
* \param c The symbol to count the occurrences in the prefix.
* \returns The number of occurrences of symbol c in the prefix [0..i-1] of the supported vector.
* \par Worst case time complexity
* \f$ \Order{\log \log |\Sigma|} \f$
* \par Average case time complexity
* \f$ \Order{\log H_0} \f$
* \par Precondition
* \f$ i \leq size() \f$
*/
size_type rank(size_type i, value_type c)const
{
assert(i <= size());
auto success_class_offset = try_get_char_class_offset(c);
if (!std::get<0>(success_class_offset)) {
return 0;
}
auto cl = std::get<1>(success_class_offset);
auto offset = std::get<2>(success_class_offset);
size_type count = m_class.rank(i, cl);
return cl < m_singleton_class_cnt
? count
: m_offset[cl-m_singleton_class_cnt].rank(count, offset);
};
//! Calculates how many occurrences of symbol wt[i] are in the prefix [0..i-1] of the original sequence.
/*!
* \param i The index of the symbol.
* \return Pair (rank(wt[i],i),wt[i])
* \par Precondition
* \f$ i < size() \f$
*/
std::pair<size_type, value_type>
inverse_select(size_type i)const
{
assert(i < size());
auto textoffset_class = m_class.inverse_select(i);
auto textoffset = textoffset_class.first;
auto cl = textoffset_class.second;
if (cl < m_singleton_class_cnt) {
return std::make_pair(textoffset, m_char2class.select(1, cl));
}
auto class_result = m_offset[cl-m_singleton_class_cnt].inverse_select(textoffset);
return std::make_pair(class_result.first, m_char2class.select(class_result.second+1, cl));
}
//! Calculates the i-th occurrence of the symbol c in the supported vector.
/*!
* \param i The i-th occurrence.
* \param c The symbol c.
* \par Worst case time complexity
* \f$ \Order{\log \log |\Sigma|} \f$
* \par Average case time complexity
* \f$ \Order{\log H_0} \f$
* \par Precondition
* \f$ 1 \leq i \leq rank(size(), c) \f$
*/
size_type select(size_type i, value_type c)const
{
assert(1 <= i and i <= rank(size(), c));
auto success_class_offset = try_get_char_class_offset(c);
if (!std::get<0>(success_class_offset)) {
return m_size;
}
auto cl = std::get<1>(success_class_offset);
auto offset = std::get<2>(success_class_offset);
size_type text_offset = cl < m_singleton_class_cnt
? i
: 1 + m_offset[cl-m_singleton_class_cnt].select(i, offset);
return m_class.select(text_offset, cl);
};
//! Serializes the data structure into the given ostream
size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += write_member(m_size, out, child, "size");
written_bytes += write_member(m_sigma, out, child, "sigma");
written_bytes += write_member(m_singleton_class_cnt, out, child, "singleton_classes");
written_bytes += write_member(m_class_cnt, out, child, "classes");
written_bytes += m_char2class.serialize(out, child, "char2class");
written_bytes += m_class.serialize(out, child, "class");
for (value_type i=0; i<m_offset.size(); ++i) {
written_bytes += m_offset[i].serialize(out, child, "offset");
}
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
//! Loads the data structure from the given istream.
void load(std::istream& in)
{
read_member(m_size, in);
read_member(m_sigma, in);
read_member(m_singleton_class_cnt, in);
read_member(m_class_cnt, in);
m_char2class.load(in);
m_class.load(in);
value_type offset_size = m_class_cnt - m_singleton_class_cnt;
m_offset.resize(offset_size);
for (value_type i=0; i<offset_size; ++i) {
m_offset[i].load(in);
}
}
};
}// end namespace sdsl
#endif