
LIMS/NIMS ELECTRO-MAGNETIC DATA ARCHIVING
Lana Erofeeva & Gary Egbert, 2006

1. Introduction
LIMS/NIMS data archiving involves different kinds of software and is done in few stages

described below. Basically each step converts from one data format to other to provide SEED format
required by IRIS on output. (For SEED format description see http://www.iris.edu/manuals). The
process of SEED volume production is illustrated by the scheme in Fig.1:

Fig.1

Data in simplified
binary or ASCII
formats LIMS/NIMS

data readers

Perl Mysql
importers

mysql Data Base
“EM_DB” with
PDCC schema

PDCC
Dataless
SEED

LEGEND
- input/output data

- intermidiate data

- software

Mini-seed
converters

Raw
Binary
 Data

Mini-seeds
 (time series)

Raw binary data on input are in one of 3 formats:
-“*.1mp” format binary data produced by LIMS;
 - *.bin format produced by NIMS MT1;
 - hourly binary data files produced by NIMS HP200.

These format data are read with John Booker’s LIMS/NIMS data readers written in Fortran:
“mp2fts4seed” (LIMS) and “nimsread” (NIMS) and thus converted to simplified ASCII (* fts for
LIMS) or binary (*bnn for NIMS) format data. Then processing split in two branches: dataless SEED
production and mini-seeds production. Dataless SEED is produced first by importing data into mysql
data base EM_DB (with a schema supported by PDCC (Java GUI by IRIS), see
http://www.iris.edu/manuals/pdcc3.0/index.html) using Perl scripts, called in Fig.1 “mysql importers”
(written by Lana Erofeeva), and second, by converting the data from EM_DB to Dataless SEED
volume using the PDCC interface. The whole process is controlled by csh scripts and at the very last
stage by the PDCC.

http://www.iris.edu/manuals
http://www.iris.edu/manuals/pdcc3.0/index.html

2. Installation

To support LIMS/NIMS data archiving process the following software should be installed:

- Perl;
- mysql data base(see http://dev.mysql.com/doc/mysql/en/Installing.html, freeware). As soon as

the software is installed you need to run mysqld daemon as described in the manual at the link
above;

- mysql Perl API (see http://dev.mysql.com/doc/refman/5.0/en/perl.html). It provides a generic
interface for mysql database access. To use DBI, you must install the mysql DBI module, as
well as a mysql DataBase Driver (DBD) module;

- PDCC (Portable Data Collection Center, see http://www.iris.edu/manuals/pdcc_intro.htm)
- LimsNims archiving package (this package of of csh/perl/fortran codes suppoting the archiving

scheme described in the Introduction).

As soon as every software above is installed, the following environmental variables should be
defined in your .cshrc.paths: LimsNimsBin (path to location where LimsNims package is installed
followed by /bin); plbin (path to where Perl is installed); pdcc (path to where PDCC is installed),
i.e.

setenv LimsNimsBin /home/gauss/lana/LimsNims/bin
setenv plbin /home/server/local/bin.solaris2x/perl
setenv pdcc /home/gauss/users/lana/PDCC3

All these paths should be added to your PATH environmental variable.

At last the file mysqlInfo in LimsNims/bin should be edited. mysqlInfo is a 3 line ASCII file,
defining mysql data base name corresponding to the PDCC schema, user name and user password,
i.e.

DB=EM_DB
USER=serofeev
password=mypwd

NOTE: This information should exactly correspond to what is shown in the lines
dbName EM_DB
userName serofeev
passWord mypwd

of the PDCC configuration file PDCC/config/PDCC_config.txt. See PDCC manual on how to
configure PDCC. Further in this document the data base is referred as EM_DB.

NOTE! Multi-user usage is not implemented for PDCC. Remedy: cp PDCC3 to your destination and
edit the files as described above.

3. LimsNims Usage

 LIMS data archiving

Suppose the LIMS data files are placed into a working directory, called by experiment name
(i.e. TBT). For LIMS these files are organized in subdirectories for each station, called by a station
name. Each station subdirectory contains binary time windows data files in *.1mp format. Files

http://dev.mysql.com/doc/mysql/en/Installing.html
http://dev.mysql.com/doc/refman/5.0/en/perl.html
http://www.iris.edu/manuals/pdcc_intro.htm

hardware.<experiment_name> and <experiment_name>site.flt should be also provided on upper
level (i.e. in TBT). These are ascii files, containing common hardware and survey information, such as
filter parameters, latitude, longitude, elevation for each station etc.

TBT
 hardware.tbt
 tbtsite.flt
 tbt504
 tbt504a1.1mp
 tbt504b1.1mp

tbt504c1.1mp
tbt504c2.1mp
tbt504z1.1mp
tbt504.log

 Experiment directory in this example is called TBT. LIMS file name convention is accepted,
that is experiment name for the example above is “tbt” and the only station name is “tbt504”. Last 2
characters before “.1mp” extension define time window, i. e. a1, b1, c1.

Files *.1mp contain header information and time series for different time windows. File
tbt504.log is used to compute clock offset and drift (set to zero, if the file does not exist). This ascii file
usually comes along with *.1mp files.

To archive these data go into the directory TBT and run:

>arc_lims tbt>tbt.log

Here the script verbose output is redirected to log file tbt.log. Script arc_lims performs all stages of
data archiving described in the Introduction and is half-automatic, since at the end it uses PDCC
graphical interface, popped up at the screen, and requires some user interference. As of now PDCC
does not allow running in a batch mode: as soon as it does, the next version of the LimsNims archiving
scripts will be modified to be fully automatic. For now the following user action within PDCC
graphical interface are needed (from pop-down PDCC menus):

1. File/Import/from Database
2. File/Export/Dataless SEED file
3. Exit

NOTE: Please wait patiently without clicking till PDCC is importing/exporting data. The waiting time
might be quite substantial, depending on volume of the data you are trying to archive.
As a result the dataless SEED file with a chosen name (from PDCC prompt) will be created and bunch
of mini-seeds will be created in TBT/mini_seeds subdirectory. Station codes in SEED file should
contain only 5 characters while LIMS station names always have 6 characters, i.e. tbt504 in the
example above. The coding rule for LIMS is to take capital of the first 2 letters and the 3 digits, i.e. for
tbt504 the code will be TB504.

 NIMS data archiving

NIMS data archiving success strongly depends on the raw binary files header contents (headers
are ASCII and readable/editable with any editor, allowing to edit large files, such as “Textedit” on

Unix). These headers contain common hardware and survey information which is just typed in by
NIMS users and might thus contain typos.
An example of the CORRECT header is shown below:

>>>>> User field
Next four lines are REQUIRED information; syntax is important
"org006a" <-- EXPERIMENT CODE/SITE NUMBER/RUN LETTER
2606-014 <-- SENSOR ID ; System box ID (if different)
100. 0. <-- N-S E WIRE LENGTH (m); HEADING (deg E mag N)
100. 90. <-- E-W E WIRE LENGTH (m); HEADING (deg E mag N)
Calib <-- N ELECTRODE ID
Calib <-- E ELECTRODE ID
Calib <-- S ELECTRODE ID
Calib <-- W ELECTRODE ID
Calib <-- GROUND ELECTRODE INFO
COMMENTS: High Pass filter test

Header lines used in archiving process are emphasized with bold. Syntax of the lines is really
important (as noted in the second line of the header), but this warning is often ignored by field users. It
is also important for the experiment code (line 3) to exactly correspond to the subdirectory name where
the binary file with the header (or header.tmp) is located.

Another issue causing errors in data archiving is missing GPS records in raw data files. GPS
records provide latitude, longitude, elevation, declination and starting time of the time series. If such
record is missing then no archiving for the data is possible, unless a file guessed_info is provided.
Example of the file content:

org007a 45.276113 -119.634113 861.9 16.2 2006-08-15 21:43:22
org007b 45.276113 -119.634113 861.9 16.2 2006-08-15 22:54:03

Where one should take this information from if no GPS record is provided? There are few possibilities:

- from other time windows for the station which do come with GPS records;
- from ASCII files, provided by NIMS users, called <station/window_name>.txt, containing

parth of this information;
- starting time are figured with matlab GUI and script developed by Gary Egbert;
- declination can be calculated using calculator at

http://www.ngdc.noaa.gov/seg/geomag/jsp/struts/calcPointIGRF

NOTE: Make sure that declinations are the same for all time windows, including the one with missing
GPS record. Otherwise multiple set of channels for the same station will be produced. The “declination
rule” is:

- if there are previous time windows with GPS records, use declination values for these
windows;

- if no previous time windows with GPS record exist, use calculated declination value. However,
if time windows with GPS record come in future, this value should be corrected.

This process is not automated so far, but it should be to avoid spurious channel multiplying in the
dataless volume. For now all stations should be visually checked for multiple channels through PDCC
GUI or using rdseed output.

http://www.ngdc.noaa.gov/seg/geomag/jsp/struts/calcPointIGRF

Suppose some NIMS data files are placed into a working directory, called by experiment name,
for example Pam (level 0). For NIMS the original data files are organized in subdirectories for groups
of stations, called by a primary station index (level 1). Each such subdirectory contains another set of
subdirectories for each station/time window (level 2). Each station/time window subdirectory contains
binary data files in hourly (HP200 NIMS) or bnn (MT1 NIMS) formats (level 3). For HP200 NIMS the
file header.tmp should be also provided in each station subdirectory. As noted above for MT1 NIMS
the data.bnn files as a rule contain ascii headers with common hardware and survey information. In the
case such header is missing, the file header.tmp should be provided. For MT1 NIMS each subdirectory
should contain only one data.bnn file.

EXAMPLE:

Pam
 site_locations
 400

pam450n
header.tmp
s030918.019
s030918.020
s030918.021

 800c
pam852d
 data.bnn
pam852f

Experiment directory in this example is called Pam. The file site_locations contains
information about extended station names, required by IRIS1.

Example of the site_locations file:

pam450 -27.19501 -63.02934 Amama,ARGENTINA: J.Booker
pam460 -27.06767 -62.64465 Haase,ARGENTINA: J.Booker
pam470 -27.32824 -62.25401 Otumpa,ARGENTINA: J.Booker

Automatic script to create/append “site_location” file using text files provided by NIMS users is still to
be developed. So far the “site_location” files have been created by simple editing.

If site_locations file is not provided (or entries are missing in the file for some station) the
subdirectory names will be taken for extended station names by default. The stations names in the
example above are “pam450”,”pam460” ,… ,”pam878”. Different time windows are identified with
one extra letter. File header.tmp in pam450n contains header information for hourly data in s030918.*
files for HP200 NIMS. The file data.bnn contains all information needed to archive MT1 NIMS data.

1 IRIS requires for archived EM data to have site name in a form of Place, State, Country or Place, Country: PI name. This
information is often not available if not provided in header.txt files. To get this information it is possible to use Google
Earth (knowing latitude and longitude find closest marked location) or the EarthScope MT web site
http://www.iris.iris.edu/ESMT/. There are might be some location information in the documents provided on this site.

http://www.iris.iris.edu/ESMT/

NOTE: in the case of NIMS archiving upper directory name (i.e. Pam) not necessarily should
correspond to first 3 letters in a station name (unlike in a LIMS case). For example, the directory
structure might look like:
EarthScope
 OR
 org006a

org006b
orh005a
orh006a

However, the 3 level directory structure (experiment, group of stations, station& time windows) should
be always supported.
As well as for LIMS case station codes in SEED file should contain only 5 characters, while NIMS
station names always have 6 characters, i.e. org006a in the example above. The coding rule for NIMS
is: if all 3 digits in the station name are not zeroes, take capital of first 2 letters and the 3 digits, else
take all 3 letters and last 2 digits. For example for the station name pam852 the code will be PA852
while for ori005 the station code will be ORI05.

To archive Pam/400 data go into the directory Pam and run:

>check_headers 400

You’ll get the output like this:

HOURLY data (OLD NIMS) in this directory
 SubDir ExpCode DipoleX(m) AzimX DipoleY(m) AzimY
400/pam450n/header.tmp | + pam450n | 100.0 | 000. | 100.0 | 090.
400/pam450p/header.tmp | + pam450p | 100.0 | 000. | 100.0 | 090.
400/pam460n/header.tmp | + pam460n | 82.0 | 003. | 100.0 | 090.
400/pam460o/header.tmp | + pam460o | 82.0 | 003. | 100.0 | 090.
400/pam460p/header.tmp | + pam460p | 82.0 | 003. | 100.0 | 090.
400/pam460p1/header.tmp | + pam460p | 82.0 | 003. | 100.0 | 090.
400/pam460p2/header.tmp | + pam460p | 82.0 | 003. | 100.0 | 090.
400/pam470n/header.tmp | + pam470n | 91.0 | 017. | 100.0 | 116.
400/pam470o/header.tmp | + pam470o | 91.0 | 017. | 100.0 | 116.

There are no mistakes in the headers for this example. “+” in second column indicates that
EXPERIMENT CODE in header.tmp corresponds to the subdirectory name. It would be “-“ otherwise.
After editing for errors (if any) it is recommended to re-run check_headers, and only when no error
will be found, one may start archiving. Because of the header errors (and missing GPS records) in the
data it is recommended to do archiving in 3 steps (mkbin, mkdataless, mkminiseeds), i.e.

 mkbin 400>mkbin.log
 mkdataless 400
 cd 400
 mkminiseeds

It is recommended to look at the log file mkbin.log for “FATAL ERRORS: missing GPS record”. If
such messages are presented in the file, the file guessed_info should be created on level 2 (in Pam/400

for this example). Station/time windows with missing GPS record is easy to discover if after running
mkbin do:
cd 400
ls –l */*.hed

Station/windows for which files *.hed are of zero size does not have GPS records, that is have to be
listed in the file guessed_info on level 2 (i.e. in Pam/400 for this example). After this file is created
(using sources mentioned above) the script mkbin should be re-run once again (another option is from
every subdirectory (level 3), for which *.hed was of zero size, run nimsreadz –b from level 3, i.e. from
the subdirectory).

Script mkdataless.uses PDCC graphical interface, popped up at the screen and requires some user
interference. The same simple user actions as for arc_lims within PDCC graphical interface are
needed (from pop-down PDCC menus), i.e.:

4. File/Import/from Database
5. File/Export/Dataless SEED file
6. Exit

As a result the dataless SEED file with a chosen name (from PDCC prompt) will be created.

As a result of running mkminiseeds a bunch of mini-seeds will be written in Pam/400/mini_seeds,
Pam/800c/mini_seeds, EarthScope/OR/mini_seeds subdirectories. If the are missing GPS records,
please, do not run the script mkminiseeds unless you are completely sure about the content of the
“guessed_info” file. If “guessed_info” was correcte after mini-seeds are done, it is safer to delete all
mini-seeds and re-run mkminiseeds again.

Recent addition to the package written by Anna Kelbert is Perl script make_seeds.pl. The script
is attempt to summarize all steps described above. The script checks for errors in the headers (by
running check_headers) and the existence of GPS records in all *.bin files and exits if something is
wrong, giving user a chance to correct errors. Then, the script may be re-run again: it will not repeat
the steps that have already been successfully completed but only updates those files that need updating.
To enforce the script to update the files listed in guessed_info it should be run it with two options, the
first option being level 2 archived directory name, and the second option being “update”. Running the
script with all the options, including site, data and time, only updates “guessed_info”. The initial
version of “guessed_info” should be provided.
To run the script make_seeds.pl the following additional environmental variables should be defined:

setenv MTdata <path_to_data>/EarthS # data location
setenv MTdataless <path_to_dataless_SEEDs>/EM_ARC # dataless SEED location

Once the script make_seeds.pl says that Stage 1 has been successfully completed, this is when all the
*.dbn files have been generated2 and mt_*_lists done (see Appendix on intermediate files).
After correcting start times, it is possible to regenerate files just for those sites listed in “guessed_info”
using

2 Then Gary could run prepare_dnff.pl, providing he defined another environmental variable
setenv MThome /home/egbert/../EarthScope/OR
where he proceses the data

make_seeds.pl <data_directory_name> update

Then, if processing Stage 1 is successfully completed, user is prompted to continue to generate the
dataless SEED and the miniseeds.

Appending existing Dataless Volume

NIMS data might come either in one piece (when an experiment was completed by the time of
archiving) or come in a sequence of few pieces, when an experiment is still continuing and archiving
should be done in “real time”. The strategy for this case approved by IRIS is:

- replace existing dataless volume when new chunk of data arrives;
- add new mini-seeds (without changing old mini-seeds).

LimsNims package is written to support this strategy. Let us consider example of archiving in few
steps on example of EartScope data. The data are coming on CDs with time interval approximately 1-2
weeks. We created directory for the data, called EarthS, and put contents of each chunk of data into
subdirectories OR1, OR2, OR3 etc. We also created subdirectory OR, where symbolic links to each
data subdirectory in OR1, OR2 etc. set as soon as new CDs are in.
Thus subdirectory OR totals data located in OR1,OR2 etc.

Obviously it would be feasible just to re-do whole archiving procedure for the subdirectory OR
each time when new CDs come. However to optimize procedure (without re-doing most time
consuming steps) the following script sequence is recommended. Let us call a new subdirectory where
we put this new data ORk.

1. From EarthS do:
 check_headers ORk
2. edit/correct data.bin headers, if necessary, re-run check_headers;
3. mkbin ORk
4. Look for “missing GPS records” errors as described above: make file ORk/guessed_info if

there are missing GPS records, re-run mkbin (or nimsreadz –b) as described above.
5. Update EarthS/site_locations file if necessary (i.e. if new sites previously not listed in the files

are presented in the new data set)
NOTE: steps 1-5 can be accomplished with make_seeds.pl, stopping after Stage 1 is
successfully completed.

6. Go to EarthS/OR and do:
 ln –s ../ORk/or* .
7. From EarthS do:

mkdataless OR
8. From EarthS/ORk do:

mkminiseeds

New dataless SEED created on step 6 and mini-seeds created on step 7 are the data which should be
transferred to IRIS.

Appendix: Details of LIMS/NIMS archiving: intermediate stages and files

Hidden (from a LimsNims user) details of data archiving are different for LIMS and NIMS and are
described in this Appendix.

Lims/Nims Data readers
Lims/Nims data readers read raw LIMS/NIMS data and convert them into intermediate ASCII

or binary formats. These data readers are written in Fortran by John Booker with slight adjustments
(introduced by Lana Erofeeva mostly to adopt no-user-interference approach and slight output format
changes) mt2fts4eed and nimsreadz. The source files for these codes are located in LimsNims/srcL and
LimsNims/srcN correspondingly. Executables are placed in LimsNims/bin directory during each re-
compiling. As a result of mt2fts4seed intermediate ASCII *.fts and *.sp files are created and placed
into fts_sp_files subdirectory on level 1 for LIMS. For the LIMS archiving example in section 2, these
will be files TBT/fts_sp_files/tbt504a1.fts, TBT/fts_sp_files/tbt504a1.sp etc. For NIMS as a result of
nimsreadz binary files *.bin and ascii files *.hed are created and placed on level 3 into
<Experiment_Name>/<Group_name>/<Station/window_name> subdirectory. For LIMS first
archiving example in section 2, these will be files Pam/400/pam450n/pam450n.bin and
Pam/400/pam450n/ pam450n.hed etc. These executable calls are made within scripts arc_lims,
arc_lnims and mkbin.

mkdataless intermediate files

In the process of archiving some important intermediate files are created on level 1 in LIMS case and
on level 2 in NIMS case. These files present extraction of essential information taken from data
headers further collected into mysql EM_DB, and then exported to dataless SEED file with PDCC.
Looking at these files one can also spot mistakes missed when checking headers or use them for input
to other (not included in LimsNims package) processing programs.
These files are:
mt_sta_list
The ASCII file is the table of columns:
<station/time_window>|<instrument>|<lat>|<lon>|<elvation>|<start date & time>|…
<end date & time>|<base_shift_1>|<base_shift_2>|<base_shift_3>|<comments>

mt_sp_list
The ASCII file is the table of columns:
<station/time_window>|<hconv>|<econv>|<azimuthX>|<azimuthY>|<gain>|…
<dipole_lengthx>|<dipole_length_y>|<sampling_interval>|<clock_offset>|…
<sensor_orientatioon_x>|<sensor_orientatioon_y>|<tilt>
See comments on some of the listed in the file parameters below. Note, that if in mt_sta_list all time
windows are listed, in mt_sp_file only windows with different system parameters are listed. That
means for later time windows the same parameters will be written into EM_DB. Sometimes these
parameters might be different for different time windows (i.e. dipole or azimuth was changed for the
next time window). In this case corresponding number of lines will be written into mt_sp_list file.

mt_chan_list
The ASCII file is the table of columns, listing all channels for all stations for all time windows as:
<station/time_window>|<channel>|<instrument>|<azimuth/sensor_orientation>|…
<start date & time>|<end date & time>|<low_pass_cutoff>|<high_pass_cutoff>|<comments>

Mini-seed converters
 The mini-seed LIMS converter mt2seed is originally written in C by Sheghui Lee, using a code
converting to “steim” format by Guy Stewart. Few bug fixes were done in both codes, and they were
also slightly modified by Lana Erofeeva. The mini-seed converter nims2seed was originally based on
mt2seed and was modified to allow reading *.bin (output by nimsread) files and different coding
convention by Lana Erofeeva. The converters take time series from *.fts or *.bnn files and output them
in mini-seed format put into mini_seeds subdirectory. This subdirectory is located on level 1 for LIMS
and on level 2 for NIMS. Mini-seed files are most space consuming and produce most irritation in IRIS
when transferred erroneous and should be re-placed. Thus careful attention is required to see if making
mini_seeds procedure succeeded for all time windows. Before making mini-seeds start time should be
verified in the case when GPS failed. A mini-seed name is combined from station code, channel name,
starting date and time and network name (EM in our case). For example for station code ORF09
channel MFE starting on 2006-09-20 18:50:00, the mini_seed name will be
ORF09.MFE.2006.263.18.50.0.0.EM (September 20 is 263 day of year 2006).
Mini-seed converter source codes are located in LimsNims/SEED.

Mysql EM_DB tables content.

The tables listed below are filled for every new SEED volume produced with LimsNims package (with
the script mkdataless).

mysql> select * from data_format_30;

id Name family_type number_keys
1 Steim 1 50 6

mysql> select * from decoder_keys_30;

id ref_id seq decoder_key(p.174 SEED
manual,appendix D)

1 1 0 F1 P4 W4 D C2 R1 P8 W4 D C2
2 1 1 P0 W4 N15 S2,0,1
3 1 2 T0 X W4
4 1 3 T1 Y4 W1 D C2
5 1 4 T2 Y2 W2 D C2
6 1 5 T3 N0 W4 D C2

Blockette 30 (2 tables above) is always the same for any EM_DB dataless volume both for LIMS and
NIMS data.

mysql> select * from generic_abbrev_33;
id description
 1 EMSOC Network
 2 NIMS HP200
 3 NIMS MT1

mysql> select * from units_abbrev_34;
 id unit_name unit_description
 1 T Tesla
 2 V/M Volts/Meter

 3 V Volts
 4 COUNTS Digital Counts

Blockette 33 is obviously different for LIMS and NIMS. Example for NIMS data is shown above.
Blockette 34 is always the same both for LIMS and NIMS.

Following are the tables, including common station information.

LIMS example:
mysql> select * from station_50;

id Sta

tion
 Lati-
tude

 Longi-
tude

Ele-
va-
tion

num_
chan-
nels

 num_
com-
ments

 site_
name

Net-
work_
refid

word
order

start_time end_time Up
date_
flag

Net-
work_
code

1 TB720 28.03 91.929 4440 5 1 Tsona,
China

 1 3210 2001-05-24
11:00:00

 2001-06-29
18:42:15

 N EM

NIMS example:
mysql> select * from station_50;

id Sta

tion
 Lati-
tude

 Longi-
tude

Ele-
va-
tion

num_
chan-
nels

num_
com-
ments

 site_
name

Net-
work_
refid

word
order

start_time end_time Up
date_
flag

Net-
work_
code

1 ORF08 45.794 118.742W 510.3 5 2 Helix,
OR,
USA

1 3210 2006-09-04
17:43:59

2006-09-25
18:39:37

N EM

2 ORF09 45.709 117.903W 899.2 5 1 Palmer
Junction,OR,USA

1 3210 2006-09-10
21:58:05

2006-10-
0415:20:57

N EM

Blockette 50 contains information for each station in the volume. First column contains station id,
referenced in the channel blockette 52 column 2. Channel number for each station can be 5 or10,15 etc.
Physically LIMS/NIMS have 5 channels. However if channel parameters changed during experiment
(for example dipole length changed), then new group of channels is created (each channel is doubled,
despite only one might have different parameter values).

NIMS example:
mysql> select * from station_comment_51;
 id station_id start_time end_time comment_refid comment_level
 1 1 2006-09-04 17:43:59 2006-09-15 20:17:40 1 0
 2 1 2006-09-15 21:56:21 2006-09-25 18:39:37 2 0
 3 2 2006-09-10 21:58:05 2006-10-04 15:20:57 1 0
Blockette 51 contains comment links for each station in the volume (unless station does not have any
comments). For example, station ORF08 (station id =1) has 2 comments acting in time intervals shown
in the first 2 rows, columns 3 and 4 of the table. Comment_refid column refers to actual comment from
the blockette 31, containing all possible comments for all stations in the volume (two in this example,
see the following table). Thus first row of the station comment table corresponds to the first row of
comment description blockette, and second comment for the same station corresponds to second row
of the blockette 31 table.

NIMS example
mysql> select * from comment_desc_31;
 id class description level_units_refid
 1 S High Pass filter test 0
 2 S High Pass filter test NO GPS rec->lat,lon,elev, start_time NOMINAL 0

Blockette 52 contains information on each channel for each stations. Channels *F* are magnetic, and
channels *Q* are electric. First letter is “L” for LIMS (low frequency) and “M” for NIMS (medium
frequency) in correspondence with SEED manual rule for naming channels. Azimuth to real North for
each channel is calculated as azimuth_to_magnetic_North (taken from the raw files header) plus
declination.
LIMS example
mysql> select * from channel_52;3

id Station

_id
Chan
nel

units_
signal_
response

Units_
calibration
_input

Lati
tude

Longi
tude

Eleva
tion

Azi
muth

dip Sample
_rate

start_time end_time

1 1 VFN 1 1 28.03 91.929 4440 0 0 0.2 2001-05-24
11:00:00

2001-06-29
18:42:15

2 1 VFE 1 1 28.03 91.929 4440 90 0 0.2 2001-05-24
11:00:00

2001-06-29
18:42:15

3 1 VFZ 1 1 28.03 91.929 4440 0 90 0.2 2001-05-24
11:00:00

2001-06-29
18:42:15

4 1 VQN 3 2 28.03 91.929 4440 0 0 0.2 2001-05-24
11:00:00

2001-06-29
18:42:15

5 1 VQE 3 2 28.03 91.929 4440 90 0 0.2 2001-05-24
11:00:00

2001-06-29
18:42:15

NIMS example
mysql> select * from channel_52;
id Station

_id
Chan
nel

units_
signal_
response

units_
calibration
_input

Lati
tude

Longi
tude

Eleva
tion

Azi
muth

dip Sample
_rate

start_time end_time

1 1 MFN 1 1 45.7935 -118.74201 509.9 16.7 0 8 2006-09-04
17:43:59

2006-09-25
18:39:37

2 1 MFE 1 1 45.7935 -118.74201 509.9 106.7 0 8 2006-09-04
17:43:59

2006-09-25
18:39:37

3 1 MFZ 1 1 45.7935 -118.74201 509.9 0 90 8 2006-09-04
17:43:59

2006-09-25
18:39:37

4 1 MQN 3 2 45.7935 -118.74201 509.9 16.7 0 8 2006-09-04
17:43:59

2006-09-25
18:39:37

5 1 MQE 3 2 45.7935 -118.74201 509.9 106.7 0 8 2006-09-04
17:43:59

2006-09-25
18:39:37

6 2 MFN 1 1 45.70861 -117.90287 900.7 16.5 0 8 2006-09-10
21:58:05

2006-10-04
15:20:57

7 2 MFE 1 1 45.70861 -117.90287 900.7 106.5 0 8 2006-09-10
21:58:05

2006-10-04
15:20:57

8 2 MFZ 1 1 45.70861 -117.90287 900.7 0 90 8 2006-09-10
21:58:05

2006-10-04
15:20:57

9 2 MQN 3 2 45.70861 -117.90287 900.7 16.5 0 8 2006-09-10
21:58:05

2006-10-04
15:20:57

10 2 MQE 3 2 45.70861 -117.90287 900.7 106.5 0 8 2006-09-10
21:58:05

2006-10-04
15:20:57

3 Only essential columns are shown in channel_52 table;

Blocket 53 tables describe analog stages of filter systems for infinite response digital filters. Filter
system design is different for LIMS and NIMS and described in two separate sections.

LIMS Filter/Decimation Blocketts (53,57,58,61)

Analogue anti-alias six-pole Bessel low-pass filter is applied to LIMS data on each channel.
Analogue single-pole Butterworth high-pass filters are applied on the LIMS electric channels only. The
calibrated values for both filters are given in the file hardware.<experiment_name> provided with the
data in “*1mp” binary format, and normally look like this:

Chan Calib Low-pass High-pass
 T0(s) T0(s)
1 1.00 0.1 0.00
2 1.00 0.1 0.00
3 1.00 0.1 0.00
4 1.00 0.1 30000.00
5 1.00 0.1 30000.00

For magnetic channels the low pass filter is applied on stage 1, for electric channels the high-pass filter
applied on stage 1 and the low-pass filter is applied on stage 2. Stage 1 for electric channels includes
multiplying by dipole length (m), which is also taken into account when filling the sensitivity_gain_58
blockette. The low-pass and high-pass filter poles and zeroes, depending on T0, taken from
hardware.<experiment_name> file, are calculated for each new experiment by Perl script
PerlL/import_blkt_53.pl (called by the control script arc_lims).

mysql>select * from poles_zeroes_53;
id Chan

_id
Proto
_id

Transfer
_fn_type

stage_
number

Signal
in
units_
refid

Signal
out
units_
refid

normalization_
factor

Normali
zation
_freq

Number
_complex
_zeroes

Number
_complex
_poles

1 1 0 A 1 1 4 58404571357.5925 0 0 6
2 2 0 A 1 1 4 58404571357.5925 0 0 6
3 3 0 A 1 1 4 58404571357.5925 0 0 6
4 4 0 A 1 2 3 1.00000555554012 0.01 1 1
5 4 0 A 2 3 4 58404630311.4163 0.01 0 6
6 5 0 A 1 2 3 1.00000555554012 0.01 1 1
7 5 0 A 2 3 4 58404630311.4163 0.01 0 6

For magnetic channels normalization frequency fn=0, for electric channels fn=0.01, and

normalization factors were calculated from complex poles and zeroes as:

1 0

(2)
, (,

(2)

n j
j

j n
jn k

k

f p
A A p no zero

f z

π

π

−
= =

−

∏
∏∏

0)s f =

The poles and zeroes values for T0=0.1 (low-pass) and T0=30000 (high-pass) are shown in the next
two tables (“ref_id” column corresponds to the “id” column in the table poles_zeroes_53). For
example for chan_id=1, ref_id=1, normalization factor for 6 poles Bessel low pass filter is (here
precision is limited to 2 digits unlike in the table above):

(-33.55+i59.90)* (-33.55-i59.90)*(-49.81+i35.02)* (-49.81-i35.02)*(-56.65+i11.57)* (-56.65-i11.57) ~= 5.84e10

For high pass filter (i.e. for ref_id=4) we have 1 pole, calculated as -2π/T0=-2π/30000=-2.09e-4, and

normalization factor was calculated as 1

(2 0.01 2.09 4)
1.0000006

2 0.01
e

A
π

π
⋅ + −

= =
⋅

 mysql> select * from complex_zeroes_53;
Id ref_id seq real_val imaginary_val real_error imaginary_error
1 4 0 0 0 0 0
2 6 0 0 0 0 0

mysql> select * from complex_poles_53;
id ref_id seq real_val imaginary_val real_error imaginary_error
1 1 0 -33.5462372106204 59.9028482625725 0 0
2 1 1 -33.5462372106204 -59.9028482625725 0 0
3 1 2 -49.8079118230134 35.0159649606428 0 0
4 1 3 -49.8079118230134 -35.0159649606428 0 0
5 1 4 -56.6452355851319 11.5669854701223 0 0
6 1 5 -56.6452355851319 -11.5669854701223 0 0
7 2 0 -33.5462372106204 59.9028482625725 0 0
8 2 1 -33.5462372106204 -59.9028482625725 0 0
9 2 2 -49.8079118230134 35.0159649606428 0 0
10 2 3 -49.8079118230134 -35.0159649606428 0 0
11 2 4 -56.6452355851319 11.5669854701223 0 0
12 2 5 -56.6452355851319 -11.5669854701223 0 0
13 3 0 -33.5462372106204 59.9028482625725 0 0
14 3 1 -33.5462372106204 -59.9028482625725 0 0
15 3 2 -49.8079118230134 35.0159649606428 0 0
16 3 3 -49.8079118230134 -35.0159649606428 0 0
17 3 4 -56.6452355851319 11.5669854701223 0 0
18 3 5 -56.6452355851319 -11.5669854701223 0 0
19 4 0 -0.000209439510239319 0 0 0
20 5 0 -33.5462372106204 59.9028482625725 0 0
21 5 1 -33.5462372106204 -59.9028482625725 0 0
22 5 2 -49.8079118230134 35.0159649606428 0 0
23 5 3 -49.8079118230134 -35.0159649606428 0 0
24 5 4 -56.6452355851319 11.5669854701223 0 0
25 5 5 -56.6452355851319 -11.5669854701223 0 0
26 6 0 -0.000209439510239319 0 0 0
27 7 0 -33.5462372106204 59.9028482625725 0 0
28 7 1 -33.5462372106204 -59.9028482625725 0 0
29 7 2 -49.8079118230134 35.0159649606428 0 0
30 7 3 -49.8079118230134 -35.0159649606428 0 0
31 7 4 -56.6452355851319 11.5669854701223 0 0
32 7 5 -56.6452355851319 -11.5669854701223 0 0

Besides low and high pass analogues filter, digital anti-alias 3-stage Chebyshev FIR filters are applied
to the LIMS data on all 5 channels. The digital filtration schemes process a high sample rate data
stream; filter; then decimate, to produce the desired output.

Implementation of Digital Filter (d) 24 hz -> 0.2 hz
Stage Decimation Factor # filter coeff. Downcounter reset

value
ring buffer delay time

1 6 57 6 5 seconds (120 samples @ 24 hz)
2 5 45 30 10 seconds (40 samples @ 4 hz)
3 4 115 24 90 seconds (72 samples @ .8 hz)

Considering high/low pass Bessel filters already described above, for magnetic channels the
FIR filter stages are 2, 3, 4, and for magnetic channels - 3, 4, 5. Blockette 61 is used to specify FIR
digital filter coefficients. We assume type B symmetry (odd number of filter coefficients) for all FIR
stages. Note, that the last column in the fir_symmetry_61 table is called number_coeff, when actually
it shows number of factors (see SEED manual). For the B symmetry type number of factors is
Nfac=(Ncoef+1)/2.
mysql> select * from fir_symmetry_61;
id chan_id proto_id stage_

number
response_
name

Sym
metry_
code

Signal
in
units_
refid

Signal
out
units_
refid

Number
_coeff

1 1 NULL 2 NULL B 4 4 29
2 1 NULL 3 NULL B 4 4 23
3 1 NULL 4 NULL B 4 4 58
4 2 NULL 2 NULL B 4 4 29
5 2 NULL 3 NULL B 4 4 23
6 2 NULL 4 NULL B 4 4 58
7 3 NULL 2 NULL B 4 4 29
8 3 NULL 3 NULL B 4 4 23
9 3 NULL 4 NULL B 4 4 58
10 4 NULL 2 NULL B 4 4 29
11 4 NULL 3 NULL B 4 4 23
12 4 NULL 4 NULL B 4 4 58
13 5 NULL 2 NULL B 4 4 29
14 5 NULL 3 NULL B 4 4 23
15 5 NULL 4 NULL B 4 4 58

The FIR filter coefficients are calculated only once with a matlab script FIRf.m (based on Appendix C
of MT LUNCHBOX) in the LimsNims/PerlL directory and saved in ASCII files FIR_29.dat,
FIR_23.dat and FIR_58.dat. Corresponding FIR filter responses are shown in the figure below:

Fir coefficients files FIR*.dat are read by script LimsNims/PerlL/import_blkt61.pl (called by the
control scripts arc_lims) and these coefficients then placed in fir_coeff_61 table. The column ref_id in
this table refers to the column id in the fir_symmetry_61 table. Only first 29 coefficients for ref_id=1
are shown in the table below.
mysql> select * from fir_coeff_61 where ref_id=1;
id ref_id seq coefficient
1 1 0 8.334796e-06
2 1 1 2.208931e-05
3 1 2 4.066573e-05
4 1 3 4.465071e-05
5 1 4 -7.91818e-08
6 1 5 -0.0001311461
7 1 6 -0.0003608211
8 1 7 -0.0006376099
9 1 8 -0.0008187073
10 1 9 -0.000681857
11 1 10 7.250504e-07
12 1 11 0.001328088
13 1 12 0.003115611
14 1 13 0.00479482
15 1 14 0.005455172
16 1 15 0.004085216
17 1 16 -2.636826e-06
18 1 17 -0.006675313
19 1 18 -0.01460059
20 1 19 -0.02119498
21 1 20 -0.02303564
22 1 21 -0.01672284
23 1 22 5.3251e-06
24 1 23 0.02725022
25 1 24 0.06240374
26 1 25 0.1003492
27 1 26 0.1344599
28 1 27 0.1581684
29 1 28 0.1666601

Filter blocketts 53 and 61 content corresponds to the content of two other blocketts, describing
decimation and sensitivity/gain.

Decimated and non-decimated filter stages are both included in the blockette 57 tables, as
recommended by SEED manual. For non-decimated stages the decimation factor is 1, and the offset
value is 0.

mysql> select * from decimation_57
id chan_id proto_id stage_

number
input_
sample_rate

Decimation
_factor

Decimation
_offset

est_
delay

corr_
applied

1 1 NULL 1 24 1 0 0 0
2 1 NULL 2 24 6 0 5 -5
3 1 NULL 3 4 5 0 10 -10
4 1 NULL 4 0.8 4 0 90 -90
5 2 NULL 1 24 1 0 0 0
6 2 NULL 2 24 6 0 5 -5
7 2 NULL 3 4 5 0 10 -10
8 2 NULL 4 0.8 4 0 90 -90

9 3 NULL 1 24 1 0 0 0
10 3 NULL 2 24 6 0 5 -5
11 3 NULL 3 4 5 0 10 -10
12 3 NULL 4 0.8 4 0 90 -90
13 4 NULL 1 24 1 0 0 0
14 4 NULL 2 24 1 0 0 0
15 4 NULL 3 24 6 0 5 -5
16 4 NULL 4 4 5 0 10 -10
17 4 NULL 5 0.8 4 0 90 -90
18 5 NULL 1 24 1 0 0 0
19 5 NULL 2 24 1 0 0 0
20 5 NULL 3 24 6 0 5 -5
21 5 NULL 4 4 5 0 10 -10
22 5 NULL 5 0.8 4 0 90 -90

Blockette 58 is used both as a gain at a given frequency (stage>0) and as sensitivity (stage=0)
for the entire channel at given frequency. The sensitivity_gain_58 table is filled out simultaneously
with the decimation_57 table. Number of rows in sensitivity_gain_58 table is equal to the number of
rows in decimation_57 table plus number of channels (sensitivity specification for each channel).

Gain for stage 1 for magnetic channels (low-pass) is calculated as 1/hfac*1e9, where hfac is taken
from *sp file, at zero frequency (conversion from Tesla to digital counts). For example, if hfac=3.05e-2,
the gain will be 1/3.05e-2*1e9=3.2787e10, as shown in the table below. FIR stage gains are units for
the magnetic channels, and sensitivity is a product of gains over entire channel at zero frequency, that
is also 1/hfac*109.

Gain for stage 1 for electric channels is equal to the dipole length (m), coming from *sp files
(100m in the example below) and corrected for normalization frequency 0.01 (i.e. multiplied by A0/A1,
where A1 calculated at frequency=0.01Hz). Gain for stage 2 for magnetic channels (low-pass) is
calculated as 1/efac*103, where efac is taken from *sp file and multiplied by A0/A1, where A1 calculated
at frequency=0.01Hz (conversion from Volts to digital counts). FIR stage gains are units for the
electric channels, and sensitivity is a product of gains over entire channel at 0.01Hz frequency.
mysql> select * from sensitivity_gain_58;
id chan_id proto_id stage_number sensitivity_gain frequency number_history
1 1 NULL 1 32786884923.4077 0 0
2 1 NULL 2 1 0 0
3 1 NULL 3 1 0 0
4 1 NULL 4 1 0 0
5 1 NULL 0 32786884923.4077 0 0
6 2 NULL 1 32786884923.4077 0 0
7 2 NULL 2 1 0 0
8 2 NULL 3 1 0 0
9 2 NULL 4 1 0 0
10 2 NULL 0 32786884923.4077 0 0
11 3 NULL 1 32786884923.4077 0 0
12 3 NULL 2 1 0 0
13 3 NULL 3 1 0 0
14 3 NULL 4 1 0 0
15 3 NULL 0 32786884923.4077 0 0
16 4 NULL 1 117.999344449908 0.01 0
17 4 NULL 2 655737.698468154 0.01 0
18 4 NULL 3 1 0.01 0
19 4 NULL 4 1 0.01 0
20 4 NULL 5 1 0.01 0
21 4 NULL 0 77376618.5503335 0.01 0
22 5 NULL 1 139.999222228704 0.01 0
23 5 NULL 2 655737.698468154 0.01 0

24 5 NULL 3 1 0.01 0
25 5 NULL 4 1 0.01 0
26 5 NULL 5 1 0.01 0
27 5 NULL 0 91802767.7715821 0.01 0

NIMS Filter/Decimation blocketts

Analogue 3 poles Butterworth low pass filter is applied for NIMS magnetic channels. Electric

channels are filtered with 1 pole Butterworth high pass filter on stage 1 and 5 poles Butterworth low
pass filter on stage 2. Parameters for these filters (T0 and delays) are coming from the *.hed files
produced by nimsreadz.

mysql>select * from poles_zeroes_53;
id Chan_id Proto_id Transfer_

fn_type
stage_
number

signal_in_
units_refid

signal_out_
units_refid

Normalization
_factor

Normalization
_freq

number_
complex_
zeroes

number_
complex_
poles

1 1 0 A 1 1 4 1984.31439386405 0 0 3
2 2 0 A 1 1 4 1984.31439386405 0 0 3
3 3 0 A 1 1 4 1984.31439386405 0 0 3
4 4 0 A 1 2 3 1.00000351811134 0.01 1 1
5 4 0 A 2 3 4 313383.601119191 0.01 0 5
6 5 0 A 1 2 3 1.00000351811134 0.01 1 1
7 5 0 A 2 3 4 313383.601119191 0.01 0 5
8 6 0 A 1 1 4 1984.31439386405 0 0 3
9 7 0 A 1 1 4 1984.31439386405 0 0 3
10 8 0 A 1 1 4 1984.31439386405 0 0 3
11 9 0 A 1 2 3 1.00000351811134 0.01 1 1
12 9 0 A 2 3 4 313383.601119191 0.01 0 5
13 10 0 A 1 2 3 1.00000351811134 0.01 1 1
14 10 0 A 2 3 4 313383.601119191 0.01 0 5

Exactly like for LIMS case magnetic channels normalization frequency is taken zero, and for
electric channels normalization frequency is set to fn=0.01; then normalization factors are calculated
from complex poles and zeroes using the same formulas, i.e.:

1 0

(2)
, (,

(2)

n j
j

j n
jn k

k

f p
A A p no zero

f z

π

π

−
= =

−

∏
∏∏

0)s f =

The poles and zeroes values for T0=0.5 (low-pass) and T0=37699 (high-pass) are shown in the tables
below (“ref_id” column corresponds to the “id” column in the table poles_zeroes_53). For example for
chan_id=1, ref_id=1, normalization factor for 3 poles Butterworth low pass filter is calculated as (here
precision is limited to 2 digits unlike in the table above):

(-6.28+i10.88)*(-6.28-i10.88)*(-12.57)=1.984e3

For high pass filter (i.e. for ref_id=4) we have 1 pole, calculated as -2π/T0=-2π/37699=-1.67e-4, and

normalization factor is calculated as 1

(2 0.01 1.67 4)
1.0000004

2 0.01
e

A
π

π
⋅ + −

= =
⋅

mysql>select * from complex_zeroes_53;

id ref_id seq real_val imaginary_val real_error imaginary_error
1 4 0 0 0 0 0
2 6 0 0 0 0 0
3 11 0 0 0 0 0
4 13 0 0 0 0 0

mysql>select * from complex_poles_53;
id ref_id seq real_val imaginary_val real_error imaginary_error
1 1 0 -6.28318530717958 10.882476952035 0 0
2 1 1 -6.28318530717958 -10.882476952035 0 0
3 1 2 -12.5663706143592 0 0 0
4 2 0 -6.28318530717958 10.882476952035 0 0
5 2 1 -6.28318530717958 -10.882476952035 0 0
6 2 2 -12.5663706143592 0 0 0
7 3 0 -6.28318530717958 10.882476952035 0 0
8 3 1 -6.28318530717958 -10.882476952035 0 0
9 3 2 -12.5663706143592 0 0 0
10 4 0 -0.000166667161123096 0 0 0
11 5 0 -3.88300851983698 11.951875091317 0 0
12 5 1 -3.88300851983698 -11.951875091317 0 0
13 5 2 -10.1661938270166 7.38651264712031 0 0
14 5 3 -10.1661938270166 -7.38651264712031 0 0
15 5 4 -12.5663706143592 0 0 0
16 6 0 -0.000166667161123096 0 0 0
17 7 0 -3.88300851983698 11.951875091317 0 0
18 7 1 -3.88300851983698 -11.951875091317 0 0
19 7 2 -10.1661938270166 7.38651264712031 0 0
20 7 3 -10.1661938270166 -7.38651264712031 0 0
21 7 4 -12.5663706143592 0 0 0
22 8 0 -6.28318530717958 10.882476952035 0 0
23 8 1 -6.28318530717958 -10.882476952035 0 0
24 8 2 -12.5663706143592 0 0 0
25 9 0 -6.28318530717958 10.882476952035 0 0
26 9 1 -6.28318530717958 -10.882476952035 0 0
27 9 2 -12.5663706143592 0 0 0
28 10 0 -6.28318530717958 10.882476952035 0 0
29 10 1 -6.28318530717958 -10.882476952035 0 0
30 10 2 -12.5663706143592 0 0 0
31 11 0 -0.000166667161123096 0 0 0
32 12 0 -3.88300851983698 11.951875091317 0 0
33 12 1 -3.88300851983698 -11.951875091317 0 0
34 12 2 -10.1661938270166 7.38651264712031 0 0
35 12 3 -10.1661938270166 -7.38651264712031 0 0
36 12 4 -12.5663706143592 0 0 0
37 13 0 -0.000166667161123096 0 0 0
38 14 0 -3.88300851983698 11.951875091317 0 0
39 14 1 -3.88300851983698 -11.951875091317 0 0
40 14 2 -10.1661938270166 7.38651264712031 0 0
41 14 3 -10.1661938270166 -7.38651264712031 0 0
42 14 4 -12.5663706143592 0 0 0

Since no FIR filters is used for NIMS, blockette 61 is not filled (unlike LIMS case).

Blockette 57 includes only non-decimated stages (thus decimation factor is unit, and decimation offset
is zero for all channels). Typical part of the *.hed file produced by nimsreadz for MT1 NIMS data used
to fill out the decimation_57 table is shown below:

Magnetic field - 3 pole Butterworth LOWPASS
corner PERIOD GROUP DELAY (sec):
Hx 0.5 0.159
Hy 0.5 0.159
Hz 0.5 0.159
Electric field - 5 pole Butterworth LOWPASS
corner PERIOD GROUP DELAY (sec):
Ex 0.5 0.2575
Ey 0.5 0.2575
Electric field - 1 pole Butterworth HIGHPASS
corner PERIOD TIME CONSTANT (sec):
Ex 37699 6000
Ey 37699 6000

MT sample time offsets:
(>0 implies sample time earlier than clock time = FAST clock)
Absolute Relative to Hx (including group delays)
Hx 0.2455 0.0000 seconds
Hy 0.2365 -0.0090 seconds
Hz 0.2275 -0.0180 seconds
Ex 0.1525 -0.0055 seconds
Ey 0.1525 -0.0055 seconds

 For MT1 example shown above, absolute time offsets are taken as estimated delays in the table below.

mysql> select * from decimation_57;
id chan_id proto_id stage_number input_sample_rate decimation_factor decimation_offset est_delay corr_applied
1 1 NULL 1 8 1 0 0.2455 0
2 2 NULL 1 8 1 0 0.2365 0
3 3 NULL 1 8 1 0 0.2275 0
4 4 NULL 1 8 1 0 0 0
5 4 NULL 2 8 1 0 0.1525 0
6 5 NULL 1 8 1 0 0 0
7 5 NULL 2 8 1 0 0.1525 0
8 6 NULL 1 8 1 0 0.2455 0
9 7 NULL 1 8 1 0 0.2365 0
10 8 NULL 1 8 1 0 0.2275 0
11 9 NULL 1 8 1 0 0 0
12 9 NULL 2 8 1 0 0.1525 0
13 10 NULL 1 8 1 0 0 0
14 10 NULL 2 8 1 0 0.1525 0

Since HP200 NIMS *.hed files are different and contain only delays realitive to Ex, the estimated
delay values for these data are calculated as: -<group_delay>- <relative_to_Ex_delay>. For example,
typical NIMS HP200 *.hed file part looks like:

Magnetic field - 3 pole Butterworth LOWPASS
corner PERIOD GROUP DELAY (sec):
Hx 0.5 0.159
Hy 0.5 0.159
Hz 0.5 0.159

Electric field - 5 pole Butterworth LOWPASS
corner PERIOD GROUP DELAY (sec):
Ex 0.5 0.2575
Ey 0.5 0.2575
Electric field - 1 pole Butterworth HIGHPASS
corner PERIOD TIME CONSTANT (sec):
Ex 188496 30000
Ey 188496 30000

MT sample time offsets:
(>0 implies sample time earlier than clock time = FAST clock)
Relative to Ex (including group delays)
Hx +0.2555 seconds
Hy +0.2615 seconds
Hz +0.2735 seconds
Ex +0.0000 seconds
Ey -0.1250 seconds

Then estimated delays for Hx, Hy, Hz, Ex, Ey will be -0.4145,-0.4245,-0.4325,-0.2575,-0.1325
correspondingly.

Like for LIMS case, the sensitivity_gain_58 table is filled out simultaneously with the
decimation_57 table. Number of rows in sensitivity_gain_58 table is equal to the number of rows in
decimation_57 table plus number of channels (sensitivity specification for each channel).

Gain for stage 1 for magnetic channels (Butterworth 3 poles low-pass) is calculated as
1/hfac*1e9, where hfac is taken from *.hed file, at zero frequency (conversion from Tesla to digital
counts). Typical value of hfac is 0.01, then gain will be 1e11, as shown in the table below. Sensitivity is
a product of gains over entire channel at zero frequency, that is also 1/hfac*109.

Gain for stage 1 for electric channels is equal to the dipole length (m), coming from *.hed files
(100m in the example below) and corrected for normalization frequency 0.01 (i.e. multiplied by A0/A1,
where A1 calculated at frequency=0.01Hz). Gain for stage 2 for magnetic channels (low-pass) is
calculated as 1/efac*103, where efac is taken from *.hed file, and multiplied by A0/A1, where A1
calculated at frequency=0.01Hz (conversion from Volts to digital counts). For example, typical value
for MT1 NIMS efac is 2.441406e-6, thus typical value for gain will be 4.0960e+08, multiplied by
A0/A1 (~1). Sensitivity is again calculated as a product of gains over entire channel at 0.01Hz
frequency.

mysql>select * from sensitivity_gain_58;

id chan_id proto_id stage_number sensitivity_gain frequency number_history
1 1 NULL 1 100000000000 0 0
2 1 NULL 0 100000000000 0 0
3 2 NULL 1 100000000000 0 0
4 2 NULL 0 100000000000 0 0
5 3 NULL 1 100000000000 0 0
6 3 NULL 0 100000000000 0 0
7 4 NULL 1 99.9996481901037 0.01 0
8 4 NULL 2 409600042.095954 0.01 0
9 4 NULL 0 40959860108.247 0.01 0
10 5 NULL 1 99.9996481901037 0.01 0
11 5 NULL 2 409600042.095954 0.01 0
12 5 NULL 0 40959860108.247 0.01 0
13 6 NULL 1 100000000000 0 0
14 6 NULL 0 100000000000 0 0
15 7 NULL 1 100000000000 0 0

16 7 NULL 0 100000000000 0 0
17 8 NULL 1 100000000000 0 0
18 8 NULL 0 100000000000 0 0
19 9 NULL 1 99.9996481901037 0.01 0
20 9 NULL 2 409600042.095954 0.01 0
21 9 NULL 0 40959860108.247 0.01 0
22 10 NULL 1 99.9996481901037 0.01 0
23 10 NULL 2 409600042.095954 0.01 0
24 10 NULL 0 40959860108.247 0.01 0

	LIMS/NIMS ELECTRO-MAGNETIC DATA ARCHIVING
	1. Introduction
	2. Installation
	3. LimsNims Usage
	Appending existing Dataless Volume
	 Appendix: Details of LIMS/NIMS archiving: intermediate stages and files
	Lims/Nims Data readers
	mkdataless intermediate files
	In the process of archiving some important intermediate files are created on level 1 in LIMS case and on level 2 in NIMS case. These files present extraction of essential information taken from data headers further collected into mysql EM_DB, and then exported to dataless SEED file with PDCC.
	Mini-seed converters
	Mysql EM_DB tables content.
	 id
	 station_id
	 start_time
	 end_time
	comment_refid
	comment_level
	 1
	 1
	 2006-09-04 17:43:59
	 2006-09-15 20:17:40
	 1
	 0
	 2
	 1
	 2006-09-15 21:56:21
	 2006-09-25 18:39:37
	 2
	 0
	 3
	 2
	 2006-09-10 21:58:05
	 2006-10-04 15:20:57
	 1
	 0
	 id
	 class
	 description
	 level_units_refid
	 1
	 S
	 High Pass filter test
	 0
	 2
	 S
	 High Pass filter test NO GPS rec->lat,lon,elev, start_time NOMINAL
	 0
	mysql>select * from poles_zeroes_53;
	id
	Chan_id
	Proto_id
	Transfer_
	fn_type
	stage_
	number
	signal_in_
	units_refid
	signal_out_
	units_refid
	Normalization
	_factor
	Normalization
	_freq
	number_
	complex_
	zeroes
	number_
	complex_
	poles
	1
	1
	0
	A
	1
	1
	4
	1984.31439386405
	0
	0
	3
	2
	2
	0
	A
	1
	1
	4
	1984.31439386405
	0
	0
	3
	3
	3
	0
	A
	1
	1
	4
	1984.31439386405
	0
	0
	3
	4
	4
	0
	A
	1
	2
	3
	1.00000351811134
	0.01
	1
	1
	5
	4
	0
	A
	2
	3
	4
	313383.601119191
	0.01
	0
	5
	6
	5
	0
	A
	1
	2
	3
	1.00000351811134
	0.01
	1
	1
	7
	5
	0
	A
	2
	3
	4
	313383.601119191
	0.01
	0
	5
	8
	6
	0
	A
	1
	1
	4
	1984.31439386405
	0
	0
	3
	9
	7
	0
	A
	1
	1
	4
	1984.31439386405
	0
	0
	3
	10
	8
	0
	A
	1
	1
	4
	1984.31439386405
	0
	0
	3
	11
	9
	0
	A
	1
	2
	3
	1.00000351811134
	0.01
	1
	1
	12
	9
	0
	A
	2
	3
	4
	313383.601119191
	0.01
	0
	5
	13
	10
	0
	A
	1
	2
	3
	1.00000351811134
	0.01
	1
	1
	14
	10
	0
	A
	2
	3
	4
	313383.601119191
	0.01
	0
	5

