
baur
A Monorepository Build Tool Written in Go

Fabian Holler,
simplesurance GmbH

Content
- Problem to solve
- Concept
- Demo
- Future

The Past: The Big Refactoring

● Monolith => Microservices
● Monorepo

Challenge: Continuous Integration

Determine which applications changed and have not
been built successfully in CI before

Idea #1: Use Git History (1/2)
$ git diff --name-only develop master

go/code/user/store/postgres/storage.go ✓
go/pb/userpb/user.pb.go ❌
go/vendor/github.com/mozillazg/go-unidecode/table/x000.go ❌

☹ Coarse Granularity

Idea #1: Use Git History (2/2)

☹ Missing build tracking => unnecessary rebuilds

Idea #2: Use next-gen Build Tools

● Bazel, Buck, Pants, Plz
(Make on Steroid + DistCC + Ccache)

� Don’t track past builds
� Lacking support for Languages or Features

Idea #3: baur (1/2)

1. Discover build inputs per application
2. Uniquely identify Build Input State
3. Lookup which application in which state was build in the past

Idea #3: baur (2/2)

● CLI:
○ List application states
○ Find matching build artifacts

Continuous integration flow with baur

baur: Repository Layout

.baur.toml Configuration File

Version of baur configuration format
config_version = 1

[Database]
 postgresql_url = "postgres://postgres@localhost:5433/baur?sslmode=disable&connect_timeout=5"

[Discover]
 application_dirs = ["a-team/","b-team"]
 search_depth = 7

.app.toml Configuration File (1/2)

name = "user-service"

[Build]
 command = "make dist"

 [Build.Input]
[Build.Input.Files]

 # Valid variables: $ROOT
 paths = [".app.toml"]

[Build.Input.GitFiles]
 # Valid variables: $ROOT
 paths = ["Makefile"]

[Build.Input.GolangSources]
 # Valid variables: $ROOT
 environment = ["GOFLAGS=-mod=vendor","GO111MODULE=on"]
 paths = ["."]

Build Inputs

- Crucial to ensure correct functionality
- Build Inputs:

- Build environment
- Containers

- Source files
- Build flags
- .app.toml

.app.toml Configuration File (2/2)

 [Build.Output]
[[Build.Output.DockerImage]]

 idfile = "t-container.id"

 [Build.Output.DockerImage.RegistryUpload]
 repository = "simplesurance/user-service"

 # Tag that is applied to the image, valid variables: $APPNAME, $UUID, $GITCOMMIT
 tag = "$GITCOMMIT"

[[Build.Output.File]]
 path = "dist/t.tar.xz"

 [Build.Output.File.FileCopy]
 path = "/mnt/fileserver/build_artifacts/$APPNAME-$GITCOMMIT.tar.xz"

 [Build.Output.File.S3Upload]
 bucket = "go-artifacts/"
 dest_file = "$APPNAME-$GITCOMMIT.tar.xz"

baur demo

Future

● Build Inputs
○ Input Resolver for more Language
○ Restrict and monitor access to Build Input Files for build.command

● Release Tracking + Changelogs
● Run and Track test and check results(?)

● https://github.com/simplesurance/baur

● https://github.com/simplesurance/baur-example

https://github.com/simplesurance/baur
https://github.com/simplesurance/baur-example

