-
Notifications
You must be signed in to change notification settings - Fork 0
/
static_model.py
111 lines (89 loc) · 3.95 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from net import WideDeepLayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.is_distributed = False
self.distributed_embedding = False
if self.config.get("hyper_parameters.distributed_embedding", 0) == 1:
self.distributed_embedding = True
self.sparse_feature_number = self.config.get(
"hyper_parameters.sparse_feature_number")
self.sparse_feature_dim = self.config.get(
"hyper_parameters.sparse_feature_dim")
self.sparse_inputs_slots = self.config.get(
"hyper_parameters.sparse_inputs_slots")
self.dense_input_dim = self.config.get(
"hyper_parameters.dense_input_dim")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
self.fc_sizes = self.config.get("hyper_parameters.fc_sizes")
def create_feeds(self, is_infer=False):
dense_input = paddle.static.data(
name="dense_input",
shape=[None, self.dense_input_dim],
dtype="float32")
sparse_input_ids = [
paddle.static.data(
name="C" + str(i), shape=[None, 1], dtype="int64")
for i in range(1, self.sparse_inputs_slots)
]
label = paddle.static.data(
name="label", shape=[None, 1], dtype="int64")
self._sparse_data_var = [label] + sparse_input_ids
self._dense_data_var = [dense_input]
feeds_list = [label] + sparse_input_ids + [dense_input]
return feeds_list
def net(self, input, is_infer=False):
self.label_input = input[0]
self.sparse_inputs = input[1:self.sparse_inputs_slots]
self.dense_input = input[-1]
sparse_number = self.sparse_inputs_slots - 1
wide_deep_model = WideDeepLayer(
self.sparse_feature_number, self.sparse_feature_dim,
self.dense_input_dim, sparse_number, self.fc_sizes)
pred = wide_deep_model(self.sparse_inputs, self.dense_input)
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
self.predict = predict_2d
auc, batch_auc, _ = paddle.static.auc(input=self.predict,
label=self.label_input,
num_thresholds=2**12,
slide_steps=20)
auc = paddle.cast(auc, "float32")
self.inference_target_var = auc
if is_infer:
fetch_dict = {'auc': auc}
return fetch_dict
cost = paddle.nn.functional.log_loss(
input=pred, label=paddle.cast(
self.label_input, dtype="float32"))
avg_cost = paddle.mean(x=cost)
self._cost = avg_cost
fetch_dict = {'cost': avg_cost, 'auc': auc}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)