-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathquery.py
886 lines (725 loc) · 28.4 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
import enum
from concurrent import futures
from typing import (
Any,
Callable,
Dict,
Generic,
Mapping,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
cast,
overload,
)
import anndata
import attrs
import numpy as np
import numpy.typing as npt
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pacomp
from scipy import sparse
from typing_extensions import Literal, Protocol, Self, TypedDict
from .. import data
from .. import measurement
from .. import options
from .. import types as base_types
from . import _fast_csr
from . import axis
from . import types
_RO_AUTO = options.ResultOrder.AUTO
class AxisColumnNames(TypedDict, total=False):
"""
Specifies column names for experiment axis query read operations.
Lifecycle: maturing
"""
obs: Optional[Sequence[str]]
"""obs columns to use. All columns if ``None`` or not present."""
var: Optional[Sequence[str]]
"""var columns to use. All columns if ``None`` or not present."""
_Exp = TypeVar("_Exp", bound="_Experimentish")
"""TypeVar for the concrete type of an experiment-like object."""
class ExperimentAxisQuery(Generic[_Exp]):
"""Axis-based query against a SOMA Experiment.
ExperimentAxisQuery allows easy selection and extraction of data from a
single :class:`Measurement` in an :class:`Experiment`, by obs/var (axis) coordinates
and/or value filter.
The primary use for this class is slicing :class:`Experiment` ``X`` layers by obs or
var value and/or coordinates. Slicing on :class:`SparseNDArray` ``X`` matrices is
supported; :class:`DenseNDArray` is not supported at this time.
IMPORTANT: this class is not thread-safe.
IMPORTANT: this query class assumes it can store the full result of both
axis dataframe queries in memory, and only provides incremental access to
the underlying X NDArray. API features such as ``n_obs`` and ``n_vars``
codify this in the API.
IMPORTANT: you must call ``close()`` on any instance of this class to
release underlying resources. The ExperimentAxisQuery is a context manager,
and it is recommended that you use the following pattern to make this easy
and safe::
with ExperimentAxisQuery(...) as query:
...
This base query implementation is designed to work against any SOMA
implementation that fulfills the basic APIs. A SOMA implementation may
include a custom query implementation optimized for its own use.
Lifecycle: maturing
"""
def __init__(
self,
experiment: _Exp,
measurement_name: str,
*,
obs_query: axis.AxisQuery = axis.AxisQuery(),
var_query: axis.AxisQuery = axis.AxisQuery(),
index_factory: types.IndexFactory = pd.Index,
):
if measurement_name not in experiment.ms:
raise ValueError("Measurement does not exist in the experiment")
# Users often like to pass `foo=None` and we should let them
obs_query = obs_query or axis.AxisQuery()
var_query = var_query or axis.AxisQuery()
self.experiment = experiment
self.measurement_name = measurement_name
self._matrix_axis_query = _MatrixAxisQuery(obs=obs_query, var=var_query)
self._joinids = _JoinIDCache(self)
self._indexer = AxisIndexer(
self,
index_factory=index_factory,
)
self._index_factory = index_factory
self._threadpool_: Optional[futures.ThreadPoolExecutor] = None
def obs(
self,
*,
column_names: Optional[Sequence[str]] = None,
batch_size: options.BatchSize = options.BatchSize(),
partitions: Optional[options.ReadPartitions] = None,
result_order: options.ResultOrderStr = _RO_AUTO,
platform_config: Optional[options.PlatformConfig] = None,
) -> data.ReadIter[pa.Table]:
"""Returns ``obs`` as an `Arrow table
<https://arrow.apache.org/docs/python/generated/pyarrow.Table.html>`_
iterator.
Lifecycle: maturing
"""
obs_query = self._matrix_axis_query.obs
return self._obs_df.read(
obs_query.coords,
value_filter=obs_query.value_filter,
column_names=column_names,
batch_size=batch_size,
partitions=partitions,
result_order=result_order,
platform_config=platform_config,
)
def var(
self,
*,
column_names: Optional[Sequence[str]] = None,
batch_size: options.BatchSize = options.BatchSize(),
partitions: Optional[options.ReadPartitions] = None,
result_order: options.ResultOrderStr = _RO_AUTO,
platform_config: Optional[options.PlatformConfig] = None,
) -> data.ReadIter[pa.Table]:
"""Returns ``var`` as an `Arrow table
<https://arrow.apache.org/docs/python/generated/pyarrow.Table.html>`_
iterator.
Lifecycle: maturing
"""
var_query = self._matrix_axis_query.var
return self._var_df.read(
var_query.coords,
value_filter=var_query.value_filter,
column_names=column_names,
batch_size=batch_size,
partitions=partitions,
result_order=result_order,
platform_config=platform_config,
)
def obs_joinids(self) -> pa.Array:
"""Returns ``obs`` ``soma_joinids`` as an Arrow array.
Lifecycle: maturing
"""
return self._joinids.obs
def var_joinids(self) -> pa.Array:
"""Returns ``var`` ``soma_joinids`` as an Arrow array.
Lifecycle: maturing
"""
return self._joinids.var
@property
def n_obs(self) -> int:
"""The number of ``obs`` axis query results.
Lifecycle: maturing
"""
return len(self.obs_joinids())
@property
def n_vars(self) -> int:
"""The number of ``var`` axis query results.
Lifecycle: maturing
"""
return len(self.var_joinids())
@property
def indexer(self) -> "AxisIndexer":
"""A ``soma_joinid`` indexer for both ``obs`` and ``var`` axes.
Lifecycle: maturing
"""
return self._indexer
def X(
self,
layer_name: str,
*,
batch_size: options.BatchSize = options.BatchSize(),
partitions: Optional[options.ReadPartitions] = None,
result_order: options.ResultOrderStr = _RO_AUTO,
platform_config: Optional[options.PlatformConfig] = None,
) -> data.SparseRead:
"""Returns an ``X`` layer as a sparse read.
Args:
layer_name: The X layer name to return.
batch_size: The size of batches that should be returned from a read.
See :class:`options.BatchSize` for details.
partitions: Specifies that this is part of a partitioned read,
and which partition to include, if present.
result_order: the order to return results, specified as a
:class:`~options.ResultOrder` or its string value.
Lifecycle: maturing
"""
try:
x_layer = self._ms.X[layer_name]
except KeyError as ke:
raise KeyError(f"{layer_name} is not present in X") from ke
if not isinstance(x_layer, data.SparseNDArray):
raise TypeError("X layers may only be sparse arrays")
self._joinids.preload(self._threadpool)
return x_layer.read(
(self._joinids.obs, self._joinids.var),
batch_size=batch_size,
partitions=partitions,
result_order=result_order,
platform_config=platform_config,
)
def obsp(self, layer: str) -> data.SparseRead:
"""Returns an ``obsp`` layer as a sparse read.
Lifecycle: maturing
"""
return self._axisp_inner(_Axis.OBS, layer)
def varp(self, layer: str) -> data.SparseRead:
"""Returns a ``varp`` layer as a sparse read.
Lifecycle: maturing
"""
return self._axisp_inner(_Axis.VAR, layer)
def obsm(self, layer: str) -> data.SparseRead:
"""Returns an ``obsm`` layer as a sparse read.
Lifecycle: maturing
"""
return self._axism_inner(_Axis.OBS, layer)
def varm(self, layer: str) -> data.SparseRead:
"""Returns a ``varm`` layer as a sparse read.
Lifecycle: maturing
"""
return self._axism_inner(_Axis.VAR, layer)
def obs_scene_ids(self) -> pa.Array:
"""Returns a pyarrow array with scene ids that contain obs from this
query.
Lifecycle: experimental
"""
try:
obs_scene = self.experiment.obs_spatial_presence
except KeyError as ke:
raise KeyError("Missing obs_scene") from ke
if not isinstance(obs_scene, data.DataFrame):
raise TypeError("obs_scene must be a dataframe.")
full_table = obs_scene.read(
coords=((_Axis.OBS.getattr_from(self._joinids), slice(None))),
result_order=options.ResultOrder.COLUMN_MAJOR,
value_filter="data != 0",
).concat()
return pacomp.unique(full_table["scene_id"])
def var_scene_ids(self) -> pa.Array:
"""Return a pyarrow array with scene ids that contain var from this
query.
Lifecycle: experimental
"""
try:
var_scene = self._ms.var_spatial_presence
except KeyError as ke:
raise KeyError("Missing var_scene") from ke
if not isinstance(var_scene, data.DataFrame):
raise TypeError("var_scene must be a dataframe.")
full_table = var_scene.read(
coords=((_Axis.OBS.getattr_from(self._joinids), slice(None))),
result_order=options.ResultOrder.COLUMN_MAJOR,
value_filter="data != 0",
).concat()
return pacomp.unique(full_table["scene_id"])
def to_anndata(
self,
X_name: str,
*,
column_names: Optional[AxisColumnNames] = None,
X_layers: Sequence[str] = (),
obsm_layers: Sequence[str] = (),
obsp_layers: Sequence[str] = (),
varm_layers: Sequence[str] = (),
varp_layers: Sequence[str] = (),
drop_levels: bool = False,
) -> anndata.AnnData:
"""
Executes the query and return result as an ``AnnData`` in-memory object.
Args:
X_name: The X layer to read and return in the ``X`` slot.
column_names: The columns in the ``var`` and ``obs`` dataframes
to read.
X_layers: Additional X layers to read and return
in the ``layers`` slot.
obsm_layers:
Additional obsm layers to read and return in the obsm slot.
obsp_layers:
Additional obsp layers to read and return in the obsp slot.
varm_layers:
Additional varm layers to read and return in the varm slot.
varp_layers:
Additional varp layers to read and return in the varp slot.
drop_levels:
Indicate whether unused categories on axis frames should be
dropped. By default, False, the categories which are present
in the SOMA Experimentand not present in the query output
are not dropped.
Lifecycle: maturing
"""
ad = self._read(
X_name,
column_names=column_names or AxisColumnNames(obs=None, var=None),
X_layers=X_layers,
obsm_layers=obsm_layers,
obsp_layers=obsp_layers,
varm_layers=varm_layers,
varp_layers=varp_layers,
).to_anndata()
# Drop unused categories on axis dataframes if requested
if drop_levels:
for name in ad.obs:
if ad.obs[name].dtype.name == "category":
ad.obs[name] = ad.obs[name].cat.remove_unused_categories()
for name in ad.var:
if ad.var[name].dtype.name == "category":
ad.var[name] = ad.var[name].cat.remove_unused_categories()
return ad
# Context management
def close(self) -> None:
"""Releases resources associated with this query.
This method must be idempotent.
Lifecycle: maturing
"""
# Because this may be called during ``__del__`` when we might be getting
# disassembled, sometimes ``_threadpool_`` is simply missing.
# Only try to shut it down if it still exists.
pool = getattr(self, "_threadpool_", None)
if pool is None:
return
pool.shutdown()
self._threadpool_ = None
def __enter__(self) -> Self:
return self
def __exit__(self, *_: Any) -> None:
self.close()
def __del__(self) -> None:
"""Ensure that we're closed when our last ref disappears."""
self.close()
# If any superclass in our MRO has a __del__, call it.
sdel = getattr(super(), "__del__", lambda: None)
sdel()
# Internals
def _read(
self,
X_name: str,
*,
column_names: AxisColumnNames,
X_layers: Sequence[str],
obsm_layers: Sequence[str] = (),
obsp_layers: Sequence[str] = (),
varm_layers: Sequence[str] = (),
varp_layers: Sequence[str] = (),
) -> "_AxisQueryResult":
"""Reads the entire query result in memory.
This is a low-level routine intended to be used by loaders for other
in-core formats, such as AnnData, which can be created from the
resulting objects.
Args:
X_name: The X layer to read and return in the ``X`` slot.
column_names: The columns in the ``var`` and ``obs`` dataframes
to read.
X_layers: Additional X layers to read and return
in the ``layers`` slot.
obsm_layers:
Additional obsm layers to read and return in the obsm slot.
obsp_layers:
Additional obsp layers to read and return in the obsp slot.
varm_layers:
Additional varm layers to read and return in the varm slot.
varp_layers:
Additional varp layers to read and return in the varp slot.
"""
x_collection = self._ms.X
all_x_names = [X_name] + list(X_layers)
all_x_arrays: Dict[str, data.SparseNDArray] = {}
for _xname in all_x_names:
if not isinstance(_xname, str) or not _xname:
raise ValueError("X layer names must be specified as a string.")
if _xname not in x_collection:
raise ValueError("Unknown X layer name")
x_array = x_collection[_xname]
if not isinstance(x_array, data.SparseNDArray):
raise NotImplementedError("Dense array unsupported")
all_x_arrays[_xname] = x_array
def _read_axis_mappings(fn, axis, keys: Sequence[str]) -> Dict[str, np.ndarray]:
return {key: fn(axis, key) for key in keys}
obsm_ft = self._threadpool.submit(
_read_axis_mappings, self._axism_inner_ndarray, _Axis.OBS, obsm_layers
)
obsp_ft = self._threadpool.submit(
_read_axis_mappings, self._axisp_inner_ndarray, _Axis.OBS, obsp_layers
)
varm_ft = self._threadpool.submit(
_read_axis_mappings, self._axism_inner_ndarray, _Axis.VAR, varm_layers
)
varp_ft = self._threadpool.submit(
_read_axis_mappings, self._axisp_inner_ndarray, _Axis.VAR, varp_layers
)
obs_table, var_table = self._read_both_axes(column_names)
x_matrices = {
_xname: _fast_csr.read_csr(
all_x_arrays[_xname],
self.obs_joinids(),
self.var_joinids(),
index_factory=self._index_factory,
).to_scipy()
for _xname in all_x_arrays
}
x = x_matrices.pop(X_name)
obs = obs_table.to_pandas()
obs.index = obs.index.astype(str)
var = var_table.to_pandas()
var.index = var.index.astype(str)
return _AxisQueryResult(
obs=obs,
var=var,
X=x,
obsm=obsm_ft.result(),
obsp=obsp_ft.result(),
varm=varm_ft.result(),
varp=varp_ft.result(),
X_layers=x_matrices,
)
def _read_both_axes(
self,
column_names: AxisColumnNames,
) -> Tuple[pa.Table, pa.Table]:
"""Reads both axes in their entirety, ensuring soma_joinid is retained."""
obs_ft = self._threadpool.submit(
self._read_axis_dataframe,
_Axis.OBS,
column_names,
)
var_ft = self._threadpool.submit(
self._read_axis_dataframe,
_Axis.VAR,
column_names,
)
return obs_ft.result(), var_ft.result()
def _read_axis_dataframe(
self,
axis: "_Axis",
axis_column_names: AxisColumnNames,
) -> pa.Table:
"""Reads the specified axis. Will cache join IDs if not present."""
column_names = axis_column_names.get(axis.value)
axis_df = axis.getattr_from(self, pre="_", suf="_df")
assert isinstance(axis_df, data.DataFrame)
axis_query = axis.getattr_from(self._matrix_axis_query)
# If we can cache join IDs, prepare to add them to the cache.
joinids_cached = self._joinids._is_cached(axis)
query_columns = column_names
added_soma_joinid_to_columns = False
if (
not joinids_cached
and column_names is not None
and "soma_joinid" not in column_names
):
# If we want to fill the join ID cache, ensure that we query the
# soma_joinid column so that it is included in the results.
# We'll filter it out later.
query_columns = ["soma_joinid"] + list(column_names)
added_soma_joinid_to_columns = True
# Do the actual query.
arrow_table = axis_df.read(
axis_query.coords,
value_filter=axis_query.value_filter,
column_names=query_columns,
).concat()
# Update the cache if needed. We can do this because no matter what
# other columns are queried for, the contents of the ``soma_joinid``
# column will be the same and can be safely stored.
if not joinids_cached:
setattr(
self._joinids,
axis.value,
arrow_table.column("soma_joinid").combine_chunks(),
)
# Drop soma_joinid column if we added it solely for use in filling
# the joinid cache.
if added_soma_joinid_to_columns:
arrow_table = arrow_table.drop(["soma_joinid"])
return arrow_table
def _axisp_inner(
self,
axis: "_Axis",
layer: str,
) -> data.SparseRead:
p_name = f"{axis.value}p"
try:
axisp = axis.getitem_from(self._ms, suf="p")
except KeyError as ke:
raise ValueError(f"Measurement does not contain {p_name} data") from ke
try:
ap_layer = axisp[layer]
except KeyError as ke:
raise ValueError(f"layer {layer!r} is not available in {p_name}") from ke
if not isinstance(ap_layer, data.SparseNDArray):
raise TypeError(
f"Unexpected SOMA type {type(ap_layer).__name__}"
f" stored in {p_name} layer {layer!r}"
)
joinids = axis.getattr_from(self._joinids)
return ap_layer.read((joinids, joinids))
def _axism_inner(
self,
axis: "_Axis",
layer: str,
) -> data.SparseRead:
m_name = f"{axis.value}m"
try:
axism = axis.getitem_from(self._ms, suf="m")
except KeyError:
raise ValueError(f"Measurement does not contain {m_name} data") from None
try:
axism_layer = axism[layer]
except KeyError as ke:
raise ValueError(f"layer {layer!r} is not available in {m_name}") from ke
if not isinstance(axism_layer, data.SparseNDArray):
raise TypeError(f"Unexpected SOMA type stored in '{m_name}' layer")
joinids = axis.getattr_from(self._joinids)
return axism_layer.read((joinids, slice(None)))
def _convert_to_ndarray(
self, axis: "_Axis", table: pa.Table, n_row: int, n_col: int
) -> np.ndarray:
indexer = cast(
Callable[[_Numpyable], npt.NDArray[np.intp]],
axis.getattr_from(self.indexer, pre="by_"),
)
idx = indexer(table["soma_dim_0"])
z: np.ndarray = np.zeros(n_row * n_col, dtype=np.float32)
np.put(z, idx * n_col + table["soma_dim_1"], table["soma_data"])
return z.reshape(n_row, n_col)
def _axisp_inner_ndarray(
self,
axis: "_Axis",
layer: str,
) -> np.ndarray:
n_row = n_col = len(axis.getattr_from(self._joinids))
table = self._axisp_inner(axis, layer).tables().concat()
return self._convert_to_ndarray(axis, table, n_row, n_col)
def _axism_inner_ndarray(
self,
axis: "_Axis",
layer: str,
) -> np.ndarray:
table = self._axism_inner(axis, layer).tables().concat()
n_row = len(axis.getattr_from(self._joinids))
n_col = len(table["soma_dim_1"].unique())
return self._convert_to_ndarray(axis, table, n_row, n_col)
@property
def _obs_df(self) -> data.DataFrame:
return self.experiment.obs
@property
def _ms(self) -> measurement.Measurement:
return self.experiment.ms[self.measurement_name]
@property
def _var_df(self) -> data.DataFrame:
return self._ms.var
@property
def _threadpool(self) -> futures.ThreadPoolExecutor:
"""
Returns the threadpool provided by the experiment's context.
If not available, creates a thread pool just in time."""
context = self.experiment.context
if context and context.threadpool:
return context.threadpool
if self._threadpool_ is None:
self._threadpool_ = futures.ThreadPoolExecutor()
return self._threadpool_
# Private internal data structures
@attrs.define(frozen=True)
class _AxisQueryResult:
"""The result of running :meth:`ExperimentAxisQuery.read`. Private."""
obs: pd.DataFrame
"""Experiment.obs query slice, as a pandas DataFrame"""
var: pd.DataFrame
"""Experiment.ms[...].var query slice, as a pandas DataFrame"""
X: sparse.csr_matrix
"""Experiment.ms[...].X[...] query slice, as an SciPy sparse.csr_matrix """
X_layers: Dict[str, sparse.csr_matrix] = attrs.field(factory=dict)
"""Any additional X layers requested, as SciPy sparse.csr_matrix(s)"""
obsm: Dict[str, np.ndarray] = attrs.field(factory=dict)
"""Experiment.obsm query slice, as a numpy ndarray"""
obsp: Dict[str, np.ndarray] = attrs.field(factory=dict)
"""Experiment.obsp query slice, as a numpy ndarray"""
varm: Dict[str, np.ndarray] = attrs.field(factory=dict)
"""Experiment.varm query slice, as a numpy ndarray"""
varp: Dict[str, np.ndarray] = attrs.field(factory=dict)
"""Experiment.varp query slice, as a numpy ndarray"""
def to_anndata(self) -> anndata.AnnData:
return anndata.AnnData(
X=self.X,
obs=self.obs,
var=self.var,
obsm=(self.obsm or None),
obsp=(self.obsp or None),
varm=(self.varm or None),
varp=(self.varp or None),
layers=(self.X_layers or None),
)
class _Axis(enum.Enum):
OBS = "obs"
VAR = "var"
@property
def value(self) -> Literal["obs", "var"]:
return super().value
@overload
def getattr_from(self, __source: "_HasObsVar[_T]") -> "_T": ...
@overload
def getattr_from(
self, __source: Any, *, pre: Literal[""], suf: Literal[""]
) -> object: ...
@overload
def getattr_from(
self, __source: Any, *, pre: str = ..., suf: str = ...
) -> object: ...
def getattr_from(self, __source: Any, *, pre: str = "", suf: str = "") -> object:
"""Equivalent to ``something.<pre><obs/var><suf>``."""
return getattr(__source, pre + self.value + suf)
def getitem_from(
self, __source: Mapping[str, "_T"], *, pre: str = "", suf: str = ""
) -> "_T":
"""Equivalent to ``something[pre + "obs"/"var" + suf]``."""
return __source[pre + self.value + suf]
@attrs.define(frozen=True)
class _MatrixAxisQuery:
"""The per-axis user query definition. Private."""
obs: axis.AxisQuery
var: axis.AxisQuery
@attrs.define
class _JoinIDCache:
"""A cache for per-axis join ids in the query. Private."""
owner: ExperimentAxisQuery
_cached_obs: Optional[pa.Array] = None
_cached_var: Optional[pa.Array] = None
def _is_cached(self, axis: _Axis) -> bool:
field = "_cached_" + axis.value
return getattr(self, field) is not None
def preload(self, pool: futures.ThreadPoolExecutor) -> None:
if self._cached_obs is not None and self._cached_var is not None:
return
obs_ft = pool.submit(lambda: self.obs)
var_ft = pool.submit(lambda: self.var)
# Wait for them and raise in case of error.
obs_ft.result()
var_ft.result()
@property
def obs(self) -> pa.Array:
"""Join IDs for the obs axis. Will load and cache if not already."""
if not self._cached_obs:
self._cached_obs = _load_joinids(
self.owner._obs_df, self.owner._matrix_axis_query.obs
)
return self._cached_obs
@obs.setter
def obs(self, val: pa.Array) -> None:
self._cached_obs = val
@property
def var(self) -> pa.Array:
"""Join IDs for the var axis. Will load and cache if not already."""
if not self._cached_var:
self._cached_var = _load_joinids(
self.owner._var_df, self.owner._matrix_axis_query.var
)
return self._cached_var
@var.setter
def var(self, val: pa.Array) -> None:
self._cached_var = val
def _load_joinids(df: data.DataFrame, axq: axis.AxisQuery) -> pa.Array:
tbl = df.read(
axq.coords,
value_filter=axq.value_filter,
column_names=["soma_joinid"],
).concat()
return tbl.column("soma_joinid").combine_chunks()
_Numpyable = Union[pa.Array, pa.ChunkedArray, npt.NDArray[np.int64]]
"""Things that can be converted to a NumPy array."""
@attrs.define
class AxisIndexer:
"""
Given a query, provides index-building services for obs/var axis.
Lifecycle: maturing
"""
query: ExperimentAxisQuery
_index_factory: types.IndexFactory
_cached_obs: Optional[types.IndexLike] = None
_cached_var: Optional[types.IndexLike] = None
@property
def _obs_index(self) -> types.IndexLike:
"""Private. Return an index for the ``obs`` axis."""
if self._cached_obs is None:
self._cached_obs = self._index_factory(self.query.obs_joinids().to_numpy())
return self._cached_obs
@property
def _var_index(self) -> types.IndexLike:
"""Private. Return an index for the ``var`` axis."""
if self._cached_var is None:
self._cached_var = self._index_factory(self.query.var_joinids().to_numpy())
return self._cached_var
def by_obs(self, coords: _Numpyable) -> npt.NDArray[np.intp]:
"""Reindex the coords (soma_joinids) over the ``obs`` axis."""
return self._obs_index.get_indexer(_to_numpy(coords))
def by_var(self, coords: _Numpyable) -> npt.NDArray[np.intp]:
"""Reindex for the coords (soma_joinids) over the ``var`` axis."""
return self._var_index.get_indexer(_to_numpy(coords))
def _to_numpy(it: _Numpyable) -> np.ndarray:
if isinstance(it, np.ndarray):
return it
return it.to_numpy()
#
# Type shenanigans
#
_T = TypeVar("_T")
_T_co = TypeVar("_T_co", covariant=True)
class _Experimentish(Protocol):
"""The API we need from an Experiment."""
@property
def ms(self) -> Mapping[str, measurement.Measurement]: ...
@property
def obs(self) -> data.DataFrame: ...
@property
def context(self) -> Optional[base_types.ContextBase]: ...
@property
def obs_spatial_presence(self) -> data.DataFrame: ...
class _HasObsVar(Protocol[_T_co]):
"""Something which has an ``obs`` and ``var`` field.
Used to give nicer type inference in :meth:`_Axis.getattr_from`.
"""
@property
def obs(self) -> _T_co: ...
@property
def var(self) -> _T_co: ...