forked from manjuv03/Layoff-Analysis-and-Modelling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLayOffAnalysis.R
197 lines (154 loc) · 7.06 KB
/
LayOffAnalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
library(tidyverse)
library(dplyr)
df <- read.csv("/content/Layoffs.csv")
head(df,10)
summary(df)
#DATA CLEANING
mean(df$total_laid_off)
is.null(df)
sum(is.na(df))
sapply(df, function(x) sum(is.na (x)))
df <- replace(df, is.na(df), 0)
sapply(df, function(x) sum(is.na (x)))
mean(df$total_laid_off)
is.numeric(df$total_laid_off)
boxplot(df$total_laid_off,df$percentage_laid_off,df$funds_raised)
str(df)
unique(df$location)
count(df,industry)
count(df,location)
df1 <- df[,colSums(is.na(df))<nrow(df)]
head(df1,5)
#Checking for duplicate values
duplicated(df1)
colnames(df1)[4] = "laid_off"
colnames(df1)[5] = "percentage"
head(df1)
#EDA
top = df1[order(df1$laid_off),]
top = tail(top,5)
top
barplot(top$laid_off, names.arg = top$company, xlab = "Company",
ylab = "Total Laid Off",main = "Top 5 Companies",col = "#0072B2")
barplot(top$laid_off, names.arg = top$industry, xlab = "Industry",
ylab = "Total Laid Off",main = "Top 5 Industries",col = "#CC79A7")
install.packages("wordcloud")
library(wordcloud,wordcloud2)
#suppressWarnings()
comp = df1$company
word_freq = table(comp)
wordcloud(words = names(word_freq), freq = word_freq,
min.freq = 15, random.order = FALSE, colors = rainbow(length(word_freq)))
options(warn = -1)
#Correlation Analysis
cor(df1$laid_off,df1$funds_raised)
#Calculating Correlation Matrix as 3x3 matrix(x,y)
install.packages("corrplot")
library(ggplot2)
library(dplyr)
library(corrplot)
cor_matrix <- cor(df1 %>% select_if(is.numeric))
cor_matrix
#Plotting coorelation Matrix
corrplot(cor_matrix, method = "circle", type = "upper", tl.col = "red", tl.srt = 40,addrect=2)
#Converted correlation matrix into dataframe for Manipulation
cor_df <- as.data.frame(as.table(cor_matrix))
head(cor_df,5)
names(cor_df) <- c("var1", "var2", "correlation")
head(cor_df,5)
#Potting Matrix Heatmap
ggplot(cor_df, aes(x = var1, y = var2, fill = correlation)) +
geom_tile() +
scale_fill_gradient2(low = "pink", mid = "blue", high = "white", midpoint = 0) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
labs(title = "Correlation Matrix 2D Grid")
#FEATURE ENGINEERING
sapply(df1, class) #to check for DataTypes
#Creating new features from existing features
df2 <- df1 %>%
mutate(NewFeature= df1$funds_raised + df1$laid_off)
head(df2,5)
#Applying Logarithmic function
df1$log_laid_off <- log(df1$laid_off)
head(df1$log_laid_off,1)
#Applying Standard scaling
df1$standardized_laid_off <- scale(df1$laid_off) #Leave Columns Unchanged
head(df1$standardized_laid_off,2,1)
library(caret)
head(df2,5)
#Remove Unnecesary Features
#df2 <- df2 %>%
#select(-c(df2$laid_off, df2$funds_raised))
#Wordcloud for NewFeature
set.seed(100)
wordcloud(words = df2$company, freq = df2$NewFeature, min.freq = 3,max.words=250, random.order=FALSE, rot.per=0.50, colors=brewer.pal(5, "Dark2"))
unique(df$location)
df1$location = factor(df1$location, levels = c("London", "SF Bay Area", "Bengaluru", "Singapore", "Sao Paulo", "Chicago", "Stockholm", "New York City", "Berlin", "Tel Aviv", "Boston", "Burlington", "Los Angeles", "Jakarta", "Sacramento", "Buenos Aires", "Melbourne", "Waterloo", "Lagos", "Dubai", "Gurugram", "Phoenix", "Gothenburg", "Toronto", "Dublin", "Seattle", "Nairobi", "Dover", "Hamburg", "San Diego", "Logan", "Tallin", "Lehi", "Columbus", "Copenhagen", "Vancouver", "Oslo", "Pittsburgh", "Montreal", "San Luis Obispo", "Jerusalem", "Austin", "New Delhi", "Belo Horizonte", "Salt Lake City", "Bangkok", "Raleigh", "Portland", "Bristol", "Washington D.C.", "Indianapolis", "Stamford", "Curitiba", "Mumbai", "Boulder", "Sydney", "Detroit", "Ottawa", "Ferdericton", "Dakar", "Florianópolis", "Philadelphia", "Hong Kong", "Beijing", "Vienna", "Atlanta", "Dallas", "Spokane", "Chennai", "Reno", "Helsinki", "Malmo", "Kuala Lumpur", "Bend", "Mexico City", "Cincinnati", "Miami", "Moscow", "Shanghai", "Non-U.S.", "Nashville", "Las Vegas", "Edinburgh", "Madison", "Amsterdam", "Santa Fe", "Denver", "Ahmedabad", "Joinville", "Zurich", "Missoula", "Minneapolis", "Guadalajara", "Blumenau", "Milwaukee", "Ann Arbor", "Lisbon", "Munich"),
labels = as.integer(0:97))
df1$location
df1$industry = factor(df1$industry,levels = c('Finance','Product','Food','HR','Security','Real Estate','Transportation','Legal','Marketing','Retail','Media','Crypto','Education','Other','Consumer','Healthcare','Infrastructure','Data','Sales','Fitness','Support','Logistics','Recruiting','Construction','Aerospace','Travel','Energy'),
labels = as.integer(0:26))
df1$industry
unique(df2$stage)
df1$stage = factor(df1$stage, levels = c('Series B','Series F','Unknown','Series D','Series C','Private Equity','Acquired','IPO','Series E','Series A','Series J','Series H','Series G','Seed','Series I'),
labels = as.integer(0:14))
df1$stage
tail(df1)
head(df1)
#Spli Dataset Into Train and Test Set.
n_obs <- nrow(df2)
split <- round(n_obs * 0.7)
train <- df2[1:split,]
test <- df2[(split + 1):nrow(df2),]
dim(train)
dim(test)
#K-Means Clustering
library("NbClust")
wssplot <- function(df1, nc=15, seed=1234){
wss <- (nrow(data)-1)*sum(apply(data,2,var))
for (i in 2:nc){
set.seed(seed)
wss[i] <- sum(kmeans(data, centers=i)$withinss)}
plot(1:nc, wss, type="b", xlab="Number of Clusters",
ylab="Within groups sum of squares")}
df_scaled <- scale(df2$laid_off[])
head(df_scaled)
nc <- NbClust(df_scaled, min.nc=2, max.nc=15, method="kmeans")
barplot(table(nc$Best.n[1,]),
xlab="Numer of Clusters", ylab="Number of Criteria",
main="Number of Clusters Chosen by 26 Criteria")
fit.km <- kmeans(df2$laid_off, 3, nstart=25)
fit.km$size
fit.km$centers
aggregate(df[-1], by=list(cluster=fit.km$cluster),mean)
#Random Forest
library(randomForest)
model_eval<-randomForest(formula= laid_off~.,data = train)
model_eval
pred.rf <- predict(model_eval,test)
rmse.rf <- sqrt(sum(((pred.rf) - test$laid_off)^2)/
length(test$laid_off))
c(RMSE = rmse.rf, pseudoR2 = mean(model_eval$rsq))
plot(pred.rf,test$laid_off, xlab = "stage", ylab = "laid_off", pch = 3)
predicted_model_eval<-predict(model_eval,test)
plot(model_eval, main="RandomForest Model")
varImpPlot(model_eval,sort=TRUE,main = "Varable Importance Plot - randomForest")
glimpse(df2)
#Linear Regression
#Building the Model
model_eval<-lm(laid_off~stage,data = train)
summary(model_eval)
#Prediction on test set
pred.lm <- predict(model_eval,test)
results <- cbind(pred.lm,test$laid_off)
rmse.lm <- sqrt(sum((pred.lm - test$laid_off)^2)/length(test$stage))
c(RMSE = rmse.lm, R2 = summary(model_eval)$r.squared)
plot(df2$stage, df2$laid_off, main = "Linear Regression",
xlab = "stage",ylab = "laid_off",xlim = c(0,10))
abline(model_eval)
#Naive Bayes
install.packages("e1071")
library(e1071)
nb<-naiveBayes(formula= laid_off~stage, data = train)
predicted_nb= predict(nb,test)
plot(predicted_nb, test$laid_off , main="Naive Bayes", xlab="Stage",ylab="laid_off")