
14.08.2023, 00:44Case study: real world dependency stubbing

Side 1 av 6http://localhost:4000/how-to/typescript-swc/

(https://srv.carbonads.net/ads/click/x/GTND42J7CVYDT2JECWSLYKQNF67DCK7MCWYD4Z3JCYAI4K7YCEBDV5QKCYYIE27JCE7I627WCWADC2QMFTBDTK7KC6SDLKQ7CYBDTK3EHJNCLSIZ?
segment=placement:sinonjsorg;)

Don’t let auth hold you back, launch your product today with PropelAuth.
(https://srv.carbonads.net/ads/click/x/GTND42J7CVYDT2JECWSLYKQNF67DCK7MCWYD4Z3JCYAI4K7YCEBDV5QKCYYIE27JCE7I627WCWADC2QMFTBDTK7KC6SDLKQ7CYBDTK3EHJNCLSIZ?
segment=placement:sinonjsorg;)

ADS VIA CARBON (HTTP://CARBONADS.NET/?UTM_SOURCE=SINONJSORG&UTM_MEDIUM=AD_VIA_LINK&UTM_CAMPAIGN=IN_UNIT&UTM_TERM=CARBON)

Case study: real world dependency stubbing

Sinon is a simple tool that only tries to do a few things and do them well:
creating and injecting test doubles (spies, fakes, stubs) into objects.
Unfortunately, in todays world of build pipelines, complex tooling,
transpilers and different module systems, doing the simple thing quickly
becomes difficult. This article is a detailed step-by-step guide on how one
can approach the typical issues that arise and various approaches for
debugging and solving them. The real-world case chosen is using Sinon
along with SWC (https://swc.rs/), running tests written in TypeScript in the
Mocha test runner (https://mochajs.org/) and wanting to replace
dependencies in this (SUT (http://xunitpatterns.com/SUT.html)). The
essence is that there are always many approaches for achieving what you want. Some require
tooling, some can get away with almost no tooling, some are general in nature (not specific to
SWC for instance) and some are a blend. This means you can usually make some of these
approaches work for other combinations of tooling as well, once you understand what is going
on. Draw inspiration from the approach and figure out what works for you!

The Sinon project (and its maintainers) does not explicitly list TypeScript as a supported target
environment. That does not mean Sinon will not run, just that there are so many complications
that we cannot come up with guides on figuring out the details for you on every system :)
Typescript is a super-set of EcmaScript (JavaScript) and can be transpiled in a wide variety of
ways into EcmaScript, both by targetting different runtimes (ES5, ES2015, ES2023, etc) and
module systems (CommonJS, ESM, AMD, …). Some transpiler are closer to the what the standard
TypeScript compiler produces, some are laxer in various ways and additionally they have all
kinds of options to tweak the result. This is indeed complex, so before you dig yourself done in
this matter, it is essential that you try to figure out what the resulting code actually looks like. As
you will see in this guide, adding a few sprinkles of console.log with the output of
Object.getOwnPropertyDescriptor(object, propname) (https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor) is
usually sufficient to understand what is going on!

All code and working setups described in this guide are on Github
(https://github.com/fatso83/sinon-swc-bug) and links to the correct branch can be found in
each section.

Tech

Mocha: drives the tests
SWC: very fast Rust-based transpiler able to target different module systems (CJS, ESM, …)
and target runtimes (ES5, ES2020, …)
Typescript: Type-safe EcmaScript superset
Sinon: library for creating and injecting test doubles (stubs, mocks, spies and fakes)
Module system: CommonJS

Wanted outcome

On Typescript

Scenario

https://srv.carbonads.net/ads/click/x/GTND42J7CVYDT2JECWSLYKQNF67DCK7MCWYD4Z3JCYAI4K7YCEBDV5QKCYYIE27JCE7I627WCWADC2QMFTBDTK7KC6SDLKQ7CYBDTK3EHJNCLSIZ?segment=placement:sinonjsorg;
https://srv.carbonads.net/ads/click/x/GTND42J7CVYDT2JECWSLYKQNF67DCK7MCWYD4Z3JCYAI4K7YCEBDV5QKCYYIE27JCE7I627WCWADC2QMFTBDTK7KC6SDLKQ7CYBDTK3EHJNCLSIZ?segment=placement:sinonjsorg;
http://carbonads.net/?utm_source=sinonjsorg&utm_medium=ad_via_link&utm_campaign=in_unit&utm_term=carbon
https://swc.rs/
https://mochajs.org/
http://xunitpatterns.com/SUT.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor
https://github.com/fatso83/sinon-swc-bug

14.08.2023, 00:44Case study: real world dependency stubbing

Side 2 av 6http://localhost:4000/how-to/typescript-swc/

Being able to replace exports on the dependency ./other with a Sinon created test double in
main.ts when running tests (see code below).

Problem

Running tests with ts-node works fine, but changing the setup to using SWC instead results in
the tests failing with the following output from Mocha:

1) main
 should mock:
 TypeError: Descriptor for property toBeMocked is non-configurable and non-
writable

Original code

main.ts

 toBeMocked

 out
 out

other.ts

 ing

main.spec.ts

 sinon

 Other
 main
 expect

 sandbox sinon

 mocked

 mocked sandbox Other

 mocked called to be

Additionally, both the .swcrc file used by SWC and the tsconfig.json file used by ts-node is
setup to produce modules of the CommonJS form, not ES Modules.

Brief Analysis

import { } from "./other";

export function main() {
const = toBeMocked();
console.log();

}

export function toBeMocked() {
return "I am the original function";

}

import from "sinon";
import "./init";
import * as from "./other";
import { } from "./main";
import { } from "chai";

const = .createSandbox();

describe("main", () => {
let ;
it("should mock", () => {

= .stub(, "toBeMocked").returns("mocked");
main();
expect(.). . .true;

});
});

14.08.2023, 00:44Case study: real world dependency stubbing

Side 3 av 6http://localhost:4000/how-to/typescript-swc/

The error message indicates the resulting output of transpilation is different from that of ts-
node , as this is Sinon telling us that it is unable to do anything with the property of an object if
the property descriptor (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty) is essentially
immutable. Let’s sprinkle some debugging statements to figure out what the differences
between the two tools are. First we will add these some debugging output to the beginning of the
test, for instance just after it("should mock", () => { , to see what the state is before we
attempt to do any modifications:

Now let’s try what happens when running this again, once with the existing SWC setup and a
second time after changing the config file for Mocha, .mocharc.json , to use 'ts-node' instead
of '@swc/register in its 'require' array. This --require option of Node is for modules that
will be run by Node before your code, making it possible to do stuff like hook into require and
transpile code on-the-fly.

Output of a SWC configured run of npm test

Other { toBeMocked: [Getter] }
Other property descriptors {
 __esModule: {
 value: true,
 writable: false,
 enumerable: false,
 configurable: false
 },
 toBeMocked: {
 get: [Function: get],
 set: undefined,
 enumerable: true,
 configurable: false
 }
}
 1) should mock

 0 passing (4ms)
 1 failing

 1) main
 should mock:
 TypeError: Descriptor for property toBeMocked is non-configurable and non-
writable

Output of a ts-node configured run of npm test

 console Other
 console Object

.log('Other',)

.log('Other property descriptors', .getOwnPropertyDescriptors

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

14.08.2023, 00:44Case study: real world dependency stubbing

Side 4 av 6http://localhost:4000/how-to/typescript-swc/

Other { toBeMocked: [Function: toBeMocked] }
Other property descriptors {
 __esModule: {
 value: true,
 writable: false,
 enumerable: false,
 configurable: false
 },
 toBeMocked: {
 value: [Function: toBeMocked],
 writable: true,
 enumerable: true,
 configurable: true
 }
}
mocked
 ✔ should mock

The important difference to note about the object Other is that the property toBeMocked is a
simple writable value in the case of ts-node and a non-configurable getter in the case of SWC. It
being a getter is not a problem for Sinon, as we have a multitude of options for replacing those,
but if configurable is set to false Sinon cannot really do anything about it.

If we take a look at

Conclusion of analysis

SWC transforms the imports on the form import * as Other from './other' into objects
where the individual exports are exposed through immutable accessors (getters).

We can attack this issue in mainly 3 ways:

1. somehow reconfigure SWC to produce different output when running tests that we can
work with, either making writable values or configurable getters

2. use pure dependency injection, opening up ./other.ts to be changed from the inside
3. attack how modules are loaded, injecting an additional require “hook”

(https://levelup.gitconnected.com/how-to-add-hooks-to-node-js-require-function-
dee7acd12698)

Solutions

Working code (https://github.com/fatso83/sinon-swc-bug/tree/swc-with-mutable-
exports)

If we can just flip the configurable flag to true during transpilation, Sinon could be
instructed to replace the getter. Turns out, there is a SWC plugin that does just that:
swc_mut_cjs_exports (https://www.npmjs.com/package/swc_mut_cjs_exports). By installing
that and adding the following under the jsc key in .swcrc , you know get a configurable
property descriptor.

"experimental": {
 "plugins": [["swc_mut_cjs_exports", {}]]
},

Mutating the output from the transpiler

https://levelup.gitconnected.com/how-to-add-hooks-to-node-js-require-function-dee7acd12698
https://github.com/fatso83/sinon-swc-bug/tree/swc-with-mutable-exports
https://www.npmjs.com/package/swc_mut_cjs_exports

14.08.2023, 00:44Case study: real world dependency stubbing

Side 5 av 6http://localhost:4000/how-to/typescript-swc/

A getter is different from a value, so you need to change your testcode slightly to replace the
getter:

const stub = sandbox.fake.returns("mocked")
sandbox.replaceGetter(Other, "toBeMocked", () => stub)

Working code (https://github.com/fatso83/sinon-swc-bug/tree/pure-di)

This technique works regardless of language, module systems, bundlers and tool chains, but
requires slight modifications of the SUT to allow modifying it. You also do not get help from
Sinon in automatically resetting state.

other.ts

 toBeMocked _toBeMocked

 mockImplementation
 toBeMocked mockImplementation

main.spec.ts

 mocked
 original Other toBeMocked

 Other original

 mocked sandbox
 Other mocked

 mocked called to be

Working code (https://github.com/fatso83/sinon-swc-bug/tree/cjs-mocking)

This is what the article on targetting the link seams (/how-to/link-seams-commonjs/) is about.
The only difference here is using Quibble instead of Proxyquire. Quibble is slightly terser and also
supports being used as a ESM loader, making it a bit more modern and useful. The end result:

Use pure dependency injection

Hooking into Node’s module loading

function _toBeMocked() {
return "I am the original function";

}

export let =

export function _setToBeMocked(){
=

}

describe("main", () => {
let ;
let = . ;

after(() => ._setToBeMocked())

it("should mock", () => {
= .stub().returns("mocked");

._setToBeMocked()
main();
expect(.). . .true;

});

https://github.com/fatso83/sinon-swc-bug/tree/pure-di
https://github.com/fatso83/sinon-swc-bug/tree/cjs-mocking
http://localhost:4000/how-to/link-seams-commonjs/

14.08.2023, 00:44Case study: real world dependency stubbing

Side 6 av 6http://localhost:4000/how-to/typescript-swc/

 mocked main

 mocked sandbox
 toBeMocked mocked
 main

 mocked called to be

Final remarks
As can be seen, there are lots of different paths to walk in order to achieve the same basic goal.
Find the one that works for your case.

 (http://sinonjs.org/)

Join the discussion on Stack Overflow! (https://stackoverflow.com/questions/tagged/sinon)

All copyright is reserved the Sinon committers.

Released under the BSD license (https://opensource.org/licenses/BSD-3-Clause).

describe("main module", () => {
let , ;

before(() => {
= .stub().returns("mocked");

quibble("./other", { : });
({ } = require("./main"));

});

it("should mock", () => {
main();
expect(.). . .true;

});
});

http://sinonjs.org/

