-
Notifications
You must be signed in to change notification settings - Fork 9
/
voice_restore.py
238 lines (189 loc) · 8.05 KB
/
voice_restore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#
# Code is adapted from https://github.com/lucidrains/e2-tts-pytorch
#
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
from typing import Dict, Any, Optional
from functools import partial
import torch
from torch import nn
from torch.nn import Module, ModuleList, Sequential, Linear
import torch.nn.functional as F
from torchdiffeq import odeint
from einops.layers.torch import Rearrange
from einops import rearrange, repeat, pack, unpack
from x_transformers import Attention, FeedForward, RMSNorm, AdaptiveRMSNorm
from x_transformers.x_transformers import RotaryEmbedding
from gateloop_transformer import SimpleGateLoopLayer
from tensor_typing import Float
class Identity(Module):
def forward(self, x, **kwargs):
return x
class AdaLNZero(Module):
def __init__(self, dim: int, dim_condition: Optional[int] = None, init_bias_value: float = -2.):
super().__init__()
dim_condition = dim_condition or dim
self.to_gamma = nn.Linear(dim_condition, dim)
nn.init.zeros_(self.to_gamma.weight)
nn.init.constant_(self.to_gamma.bias, init_bias_value)
def forward(self, x: torch.Tensor, *, condition: torch.Tensor) -> torch.Tensor:
if condition.ndim == 2:
condition = rearrange(condition, 'b d -> b 1 d')
gamma = self.to_gamma(condition).sigmoid()
return x * gamma
def exists(v: Any) -> bool:
return v is not None
def default(v: Any, d: Any) -> Any:
return v if exists(v) else d
def divisible_by(num: int, den: int) -> bool:
return (num % den) == 0
class Transformer(Module):
def __init__(
self,
*,
dim: int,
depth: int = 8,
cond_on_time: bool = True,
skip_connect_type: str = 'concat',
abs_pos_emb: bool = True,
max_seq_len: int = 8192,
heads: int = 8,
dim_head: int = 64,
num_gateloop_layers: int = 1,
dropout: float = 0.1,
num_registers: int = 32,
attn_kwargs: Dict[str, Any] = dict(gate_value_heads=True, softclamp_logits=True),
ff_kwargs: Dict[str, Any] = dict()
):
super().__init__()
assert divisible_by(depth, 2), 'depth needs to be even'
self.max_seq_len = max_seq_len
self.abs_pos_emb = nn.Embedding(max_seq_len, dim) if abs_pos_emb else None
self.dim = dim
self.skip_connect_type = skip_connect_type
needs_skip_proj = skip_connect_type == 'concat'
self.depth = depth
self.layers = ModuleList([])
self.num_registers = num_registers
self.registers = nn.Parameter(torch.zeros(num_registers, dim))
nn.init.normal_(self.registers, std=0.02)
self.rotary_emb = RotaryEmbedding(dim_head)
self.cond_on_time = cond_on_time
rmsnorm_klass = AdaptiveRMSNorm if cond_on_time else RMSNorm
postbranch_klass = partial(AdaLNZero, dim=dim) if cond_on_time else Identity
self.time_cond_mlp = Sequential(
Rearrange('... -> ... 1'),
Linear(1, dim),
nn.SiLU()
) if cond_on_time else nn.Identity()
for ind in range(depth):
is_later_half = ind >= (depth // 2)
gateloop = SimpleGateLoopLayer(dim=dim)
attn_norm = rmsnorm_klass(dim)
attn = Attention(dim=dim, heads=heads, dim_head=dim_head, dropout=dropout, **attn_kwargs)
attn_adaln_zero = postbranch_klass()
ff_norm = rmsnorm_klass(dim)
ff = FeedForward(dim=dim, glu=True, dropout=dropout, **ff_kwargs)
ff_adaln_zero = postbranch_klass()
skip_proj = Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None
self.layers.append(ModuleList([
gateloop, skip_proj, attn_norm, attn, attn_adaln_zero,
ff_norm, ff, ff_adaln_zero
]))
self.final_norm = RMSNorm(dim)
def forward(
self,
x: Float['b n d'],
times: Optional[Float['b'] | Float['']] = None,
) -> torch.Tensor:
batch, seq_len, device = *x.shape[:2], x.device
assert not (exists(times) ^ self.cond_on_time), '`times` must be passed in if `cond_on_time` is set to `True` and vice versa'
norm_kwargs = {}
if exists(self.abs_pos_emb):
# assert seq_len <= self.max_seq_len, f'{seq_len} exceeds the set `max_seq_len` ({self.max_seq_len}) on Transformer'
seq = torch.arange(seq_len, device=device)
x = x + self.abs_pos_emb(seq)
if exists(times):
if times.ndim == 0:
times = repeat(times, ' -> b', b=batch)
times = self.time_cond_mlp(times)
norm_kwargs['condition'] = times
registers = repeat(self.registers, 'r d -> b r d', b=batch)
x, registers_packed_shape = pack((registers, x), 'b * d')
rotary_pos_emb = self.rotary_emb.forward_from_seq_len(x.shape[-2])
skips = []
for ind, (
gateloop, maybe_skip_proj, attn_norm, attn, maybe_attn_adaln_zero,
ff_norm, ff, maybe_ff_adaln_zero
) in enumerate(self.layers):
layer = ind + 1
is_first_half = layer <= (self.depth // 2)
if is_first_half:
skips.append(x)
else:
skip = skips.pop()
if self.skip_connect_type == 'concat':
x = torch.cat((x, skip), dim=-1)
x = maybe_skip_proj(x)
x = gateloop(x) + x
attn_out = attn(attn_norm(x, **norm_kwargs), rotary_pos_emb=rotary_pos_emb)
x = x + maybe_attn_adaln_zero(attn_out, **norm_kwargs)
ff_out = ff(ff_norm(x, **norm_kwargs))
x = x + maybe_ff_adaln_zero(ff_out, **norm_kwargs)
assert len(skips) == 0
_, x = unpack(x, registers_packed_shape, 'b * d')
return self.final_norm(x)
class VoiceRestore(nn.Module):
def __init__(
self,
sigma: float = 0.0,
transformer: Optional[Dict[str, Any]] = None,
odeint_kwargs: Optional[Dict[str, Any]] = None,
num_channels: int = 100,
):
super().__init__()
self.sigma = sigma
self.num_channels = num_channels
self.transformer = Transformer(**transformer, cond_on_time=True)
self.odeint_kwargs = odeint_kwargs or {'atol': 1e-5, 'rtol': 1e-5, 'method': 'midpoint'}
self.proj_in = nn.Linear(num_channels, self.transformer.dim)
self.cond_proj = nn.Linear(num_channels, self.transformer.dim)
self.to_pred = nn.Linear(self.transformer.dim, num_channels)
def transformer_with_pred_head(self, x: torch.Tensor, times: torch.Tensor, cond: Optional[torch.Tensor] = None) -> torch.Tensor:
x = self.proj_in(x)
if cond is not None:
cond_proj = self.cond_proj(cond)
x = x + cond_proj
attended = self.transformer(x, times=times)
return self.to_pred(attended)
def cfg_transformer_with_pred_head(
self,
*args,
cond=None,
mask=None,
cfg_strength: float = 0.5,
**kwargs,
):
pred = self.transformer_with_pred_head(*args, **kwargs, cond=cond)
if cfg_strength < 1e-5:
return pred * mask.unsqueeze(-1) if mask is not None else pred
null_pred = self.transformer_with_pred_head(*args, **kwargs, cond=None)
result = pred + (pred - null_pred) * cfg_strength
return result * mask.unsqueeze(-1) if mask is not None else result
@torch.no_grad()
def sample(self, processed: torch.Tensor, steps: int = 32, cfg_strength: float = 0.5) -> torch.Tensor:
self.eval()
times = torch.linspace(0, 1, steps, device=processed.device)
def ode_fn(t: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
return self.cfg_transformer_with_pred_head(x, times=t, cond=processed, cfg_strength=cfg_strength)
y0 = torch.randn_like(processed)
trajectory = odeint(ode_fn, y0, times, **self.odeint_kwargs)
restored = trajectory[-1]
return restored