forked from google/gemmlowp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark_all_sizes.cc
372 lines (327 loc) · 11.1 KB
/
benchmark_all_sizes.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
// Example command line to build on Android ARM64:
/*
~/android/toolchains/r15c-aarch64/bin/aarch64-linux-android-clang++ \
test/benchmark_all_sizes.cc -o /tmp/b -O3 --std=c++11 -fPIE -static \
-DBENCHMARK_QUICK -DBENCHMARK_8bit
*/
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <ctime>
#include <iostream>
#include <map>
#include <random>
#include <set>
#include "../public/gemmlowp.h"
#ifdef GEMMLOWP_PROFILING
#include "../profiling/profiler.h"
#endif
#if defined GEMMLOWP_ANDROID && defined GEMMLOWP_ARM_32
// Compilation workaround
namespace std {
using ::round;
}
#endif
// Minimum duration of each benchmark measurement. Also, duration
// of sleep time between each two consecutive benchmark measurements to
// prevent over-heating.
const double kBenchmarkSecs = 0.1;
// Sleep time before each benchmark.
const int kCooldownBeforeBenchmarkSecs = 0;
// Number of benchmark passes.
const int kPasses = 4;
#ifdef BENCHMARK_NUM_THREADS
const int kNumThreads = BENCHMARK_NUM_THREADS;
#else
const int kNumThreads = 1;
#endif
namespace gemmlowp {
// gemmlowp itself doesn't have a Matrix class, only a MatrixMap class,
// since it only maps existing data. In tests though, we need to
// create our own matrices.
template <typename tScalar, MapOrder tOrder>
class Matrix : public MatrixMap<tScalar, tOrder> {
public:
typedef MatrixMap<tScalar, tOrder> Map;
typedef MatrixMap<const tScalar, tOrder> ConstMap;
typedef typename Map::Scalar Scalar;
static const MapOrder Order = tOrder;
using Map::cols_;
using Map::data_;
using Map::kOrder;
using Map::rows_;
using Map::stride_;
public:
Matrix() : Map(nullptr, 0, 0, 0) {}
Matrix(int rows, int cols) : Map(nullptr, 0, 0, 0) { Resize(rows, cols); }
Matrix(const Matrix& other) : Map(nullptr, 0, 0, 0) { *this = other; }
Matrix& operator=(const Matrix& other) {
Resize(other.rows_, other.cols_);
std::memcpy(data_, other.data_, size() * sizeof(Scalar));
return *this;
}
friend bool operator==(const Matrix& a, const Matrix& b) {
return a.rows_ == b.rows_ && a.cols_ == b.cols_ &&
!std::memcmp(a.data_, b.data_, a.size());
}
void Resize(int rows, int cols) {
rows_ = rows;
cols_ = cols;
stride_ = kOrder == MapOrder::ColMajor ? rows : cols;
storage.resize(size());
data_ = storage.data();
}
int size() const { return rows_ * cols_; }
Map& map() { return *static_cast<Map*>(this); }
ConstMap const_map() const { return ConstMap(data_, rows_, cols_, stride_); }
protected:
std::vector<Scalar> storage;
};
template <typename MatrixType>
void MakeZero(MatrixType* m) {
for (int c = 0; c < m->cols(); c++) {
for (int r = 0; r < m->rows(); r++) {
(*m)(r, c) = 128;
}
}
}
} // end namespace gemmlowp
template <typename BitDepthParams>
float benchmark_8bit(int rows, int depth, int cols) {
using namespace gemmlowp;
typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> ResultType;
LhsType lhs;
RhsType rhs;
ResultType result;
lhs.Resize(rows, depth);
rhs.Resize(depth, cols);
result.Resize(rows, cols);
MakeZero(&lhs);
MakeZero(&rhs);
MakeZero(&result);
typedef std::tuple<OutputStageQuantizeDownInt32ByFixedPoint,
OutputStageSaturatingCastToUint8>
Pipeline;
gemmlowp::OutputStageQuantizeDownInt32ByFixedPoint
quantize_down_stage;
quantize_down_stage.result_offset_after_shift = 128;
quantize_down_stage.result_fixedpoint_multiplier = 1234567890;
quantize_down_stage.result_shift = 16;
gemmlowp::OutputStageSaturatingCastToUint8 saturating_cast_stage;
const auto output_pipeline =
std::make_tuple(quantize_down_stage, saturating_cast_stage);
GemmContext gemm_context;
gemm_context.set_max_num_threads(kNumThreads);
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::uint8_t, BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, output_pipeline);
double time_start = real_time_in_seconds();
double t = time_start;
int iters = 0;
int iters_at_a_time = 1;
while (t - time_start < kBenchmarkSecs) {
for (int i = 0; i < iters_at_a_time; i++) {
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::uint8_t,
BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, output_pipeline);
iters++;
}
iters_at_a_time *= 2;
t = real_time_in_seconds();
}
return (t - time_start) / iters;
}
template <typename BitDepthParams>
float benchmark_8bit_to_32bit(int rows, int depth, int cols) {
using namespace gemmlowp;
typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
typedef Matrix<std::int32_t, MapOrder::ColMajor> ResultType;
LhsType lhs;
RhsType rhs;
ResultType result;
lhs.Resize(rows, depth);
rhs.Resize(depth, cols);
result.Resize(rows, cols);
MakeZero(&lhs);
MakeZero(&rhs);
MakeZero(&result);
typedef std::tuple<> EmptyPipeline;
GemmContext gemm_context;
gemm_context.set_max_num_threads(kNumThreads);
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::int32_t, BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, EmptyPipeline());
double time_start = real_time_in_seconds();
double t = time_start;
int iters = 0;
int iters_at_a_time = 1;
while (t - time_start < kBenchmarkSecs) {
for (int i = 0; i < iters_at_a_time; i++) {
gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::int32_t,
BitDepthParams>(
&gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
-128, EmptyPipeline());
iters++;
}
iters_at_a_time *= 2;
t = real_time_in_seconds();
}
return (t - time_start) / iters;
}
struct Shape {
int rows;
int depth;
int cols;
};
bool operator==(const Shape& s1, const Shape& s2) {
return s1.rows == s2.rows && s1.depth == s2.depth && s1.cols == s2.cols;
}
bool operator<(const Shape& shape1, const Shape& shape2) {
return shape1.depth < shape2.depth ||
(shape1.depth == shape2.depth &&
(shape1.rows < shape2.rows ||
(shape1.rows == shape2.rows && shape1.cols < shape2.cols)));
};
#ifdef _WIN32
#define sleep(t) Sleep(t)
#endif
float benchmark(const Shape& shape) {
if (kCooldownBeforeBenchmarkSecs) {
sleep(kCooldownBeforeBenchmarkSecs);
}
#if defined BENCHMARK_8bit
// Benchmark the fast 8bit path, using L8R8WithLhsNonzeroBitDepthParams.
// This is the recommended thing to default to: it's what most applications
// want to use, as it's the fastest.
// The contract is that LHS must take values in [1, 255], while RHS can take
// any value in [0, 255].
return benchmark_8bit<gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_8bit_wide
// Variant benchmarking the slower (mostly legacy) DefaultL8R8BitDepthParams.
// The only contract difference is that both LHS and RHS can take values in
// [0, 255].
return benchmark_8bit<gemmlowp::DefaultL8R8BitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_8bit_to_32bit
// Variant of BENCHMARK_8bit where the user asks for getting raw int32
// accumulators, instead of a 8bit-downscaled result.
return benchmark_8bit_to_32bit<gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_8bit_to_32bit_wide
// Variant of BENCHMARK_8bit_wide where the user asks for getting raw int32
// accumulators, instead of a 8bit-downscaled result.
return benchmark_8bit_to_32bit<gemmlowp::DefaultL8R8BitDepthParams>(
shape.rows, shape.depth, shape.cols);
#elif defined BENCHMARK_float
return benchmark_float(shape.rows, shape.depth, shape.cols);
#else
#error What arithmetic path should we benchmark? (Suggestion: #define BENCHMARK_8bit)
#endif
}
std::set<int> all_sizes() {
std::set<int> sizes;
for (int i = 1; i <= 2048; i *= 2) {
sizes.insert(i);
}
for (double x = 8; x <= 2048; x *= std::sqrt(2.)) {
sizes.insert(static_cast<int>(std::round(x)));
}
for (double x = 16; x <= 512; x *= std::pow(2., 1. / 4.)) {
sizes.insert(static_cast<int>(std::round(x)));
}
return sizes;
}
std::mt19937& RandomEngine() {
static std::mt19937 engine;
return engine;
}
std::vector<Shape> all_shapes_in_random_order() {
std::vector<Shape> shapes;
const std::set<int> sizes = all_sizes();
#if defined BENCHMARK_ROWS
// Benchmark one specific shape
Shape shape;
shape.rows = BENCHMARK_ROWS;
shape.depth = BENCHMARK_DEPTH;
shape.cols = BENCHMARK_COLS;
shapes.push_back(shape);
#elif defined BENCHMARK_QUICK
// Benchmark an assortment of cubic shapes
for (int size : sizes) {
Shape shape;
shape.rows = size;
shape.depth = size;
shape.cols = size;
shapes.push_back(shape);
}
#elif defined BENCHMARK_EXHAUSTIVE
// Benchmark all sorts of shapes
for (int rows : sizes) {
for (int depth : sizes) {
for (int cols : sizes) {
Shape shape;
shape.rows = rows;
shape.depth = depth;
shape.cols = cols;
shapes.push_back(shape);
}
}
}
#else
#error What shapes should we benchmark? (Suggestion: #define BENCHMARK_QUICK)
#endif
std::shuffle(std::begin(shapes), std::end(shapes), RandomEngine());
return shapes;
}
void run_benchmarks(std::map<Shape, float>* results) {
std::vector<Shape> shapes;
for (int pass = 0; pass < kPasses; pass++) {
const std::vector<Shape> pass_shapes = all_shapes_in_random_order();
shapes.insert(std::end(shapes), std::begin(pass_shapes),
std::end(pass_shapes));
}
const double time_start = gemmlowp::real_time_in_seconds();
for (std::size_t i = 0; i < shapes.size(); i++) {
const double ratio = static_cast<double>(i) / shapes.size();
const double elapsed = gemmlowp::real_time_in_seconds() - time_start;
const double elapsed_hours = elapsed / 3600.;
const double eta_hours = elapsed_hours * (1. - ratio) / ratio;
fprintf(stderr,
"Benchmarking: %.2f%% done, Elapsed: %.2f hours, ETA: %.2f "
"hours... \r",
100. * ratio, elapsed_hours, eta_hours);
fflush(stderr);
const Shape& shape = shapes[i];
float latency = benchmark(shape);
if (results->count(shape)) {
(*results)[shape] = std::min(latency, (*results)[shape]);
} else {
(*results)[shape] = latency;
}
}
fprintf(stderr, "\n");
}
int main() {
std::map<Shape, float> results;
#ifdef GEMMLOWP_PROFILING
gemmlowp::RegisterCurrentThreadForProfiling();
gemmlowp::StartProfiling();
#endif
run_benchmarks(&results);
#ifdef GEMMLOWP_PROFILING
gemmlowp::FinishProfiling();
#endif
printf("Using %d thread(s)\n", kNumThreads);
printf("depth,rows,cols,latency(s),Gop/s\n");
for (const auto& result : results) {
const Shape& shape = result.first;
printf("%d,%d,%d,%.4g,%.4g\n", shape.depth, shape.rows, shape.cols,
result.second,
2e-9 * shape.depth * shape.rows * shape.cols / result.second);
}
}