forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtm_yolofastest.cpp
663 lines (549 loc) · 18.5 KB
/
tm_yolofastest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2020, OPEN AI LAB
* Author: john2357@163.com
*
* original model: https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco
*/
#include <iostream>
#include <iomanip>
#include <vector>
#ifdef _MSC_VER
#define NOMINMAX
#endif
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
#define DEFAULT_REPEAT_COUNT 1
#define DEFAULT_THREAD_COUNT 1
enum
{
YOLOV3 = 0,
YOLO_FASTEST = 1,
YOLO_FASTEST_XL = 2
};
using namespace std;
struct BBoxRect
{
float score;
float xmin;
float ymin;
float xmax;
float ymax;
float area;
int label;
};
struct TMat
{
operator const float*() const
{
return (const float*)data;
}
float* row(int row) const
{
return (float*)data + w * row;
}
TMat channel_range(int start, int chn_num) const
{
TMat mat = {0};
mat.batch = 1;
mat.c = chn_num;
mat.h = h;
mat.w = w;
mat.data = (float*)data + start * h * w;
return mat;
}
TMat channel(int channel) const
{
return channel_range(channel, 1);
}
int batch, c, h, w;
void* data;
};
class Yolov3DetectionOutput
{
public:
int init(int version);
int forward(const std::vector<TMat>& bottom_blobs, std::vector<TMat>& top_blobs);
private:
int m_num_box;
int m_num_class;
float m_anchors_scale[32];
float m_biases[32];
int m_mask[32];
float m_confidence_threshold;
float m_nms_threshold;
};
static const char* class_names[] = {
"background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush"};
int Yolov3DetectionOutput::init(int version)
{
memset(this, 0, sizeof(*this));
m_num_box = 3;
m_num_class = 80;
fprintf(stderr, "Yolov3DetectionOutput init param[%d]\n", version);
if (version == YOLOV3)
{
m_anchors_scale[0] = 32;
m_anchors_scale[1] = 16;
m_anchors_scale[2] = 8;
float bias[] = {10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326};
memcpy(m_biases, bias, sizeof(bias));
m_mask[0] = 6;
m_mask[1] = 7;
m_mask[2] = 8;
m_mask[3] = 3;
m_mask[4] = 4;
m_mask[5] = 5;
m_mask[6] = 0;
m_mask[7] = 1;
m_mask[8] = 2;
}
else if (version == YOLO_FASTEST || version == YOLO_FASTEST_XL)
{
m_anchors_scale[0] = 32;
m_anchors_scale[1] = 16;
float bias[] = {12, 18, 37, 49, 52, 132, 115, 73, 119, 199, 242, 238};
memcpy(m_biases, bias, sizeof(bias));
m_mask[0] = 3;
m_mask[1] = 4;
m_mask[2] = 5;
m_mask[3] = 0;
m_mask[4] = 1;
m_mask[5] = 2;
}
m_confidence_threshold = 0.48f;
m_nms_threshold = 0.45f;
return 0;
}
static inline float intersection_area(const BBoxRect& a, const BBoxRect& b)
{
if (a.xmin > b.xmax || a.xmax < b.xmin || a.ymin > b.ymax || a.ymax < b.ymin)
{
// no intersection
return 0.f;
}
float inter_width = std::min(a.xmax, b.xmax) - std::max(a.xmin, b.xmin);
float inter_height = std::min(a.ymax, b.ymax) - std::max(a.ymin, b.ymin);
return inter_width * inter_height;
}
static void qsort_descent_inplace(std::vector<BBoxRect>& datas, int left, int right)
{
int i = left;
int j = right;
float p = datas[(left + right) / 2].score;
while (i <= j)
{
while (datas[i].score > p)
i++;
while (datas[j].score < p)
j--;
if (i <= j)
{
// swap
std::swap(datas[i], datas[j]);
i++;
j--;
}
}
if (left < j)
qsort_descent_inplace(datas, left, j);
if (i < right)
qsort_descent_inplace(datas, i, right);
}
static void qsort_descent_inplace(std::vector<BBoxRect>& datas)
{
if (datas.empty())
return;
qsort_descent_inplace(datas, 0, (int)(datas.size() - 1));
}
static void nms_sorted_bboxes(std::vector<BBoxRect>& bboxes, std::vector<size_t>& picked, float nms_threshold)
{
picked.clear();
const size_t n = bboxes.size();
for (size_t i = 0; i < n; i++)
{
const BBoxRect& a = bboxes[i];
int keep = 1;
for (int j = 0; j < (int)picked.size(); j++)
{
const BBoxRect& b = bboxes[picked[j]];
// intersection over union
float inter_area = intersection_area(a, b);
float union_area = a.area + b.area - inter_area;
// float IoU = inter_area / union_area
if (inter_area > nms_threshold * union_area)
{
keep = 0;
break;
}
}
if (keep)
picked.push_back(i);
}
}
static inline float sigmoid(float x)
{
return (float)(1.f / (1.f + exp(-x)));
}
int Yolov3DetectionOutput::forward(const std::vector<TMat>& bottom_blobs, std::vector<TMat>& top_blobs)
{
// gather all box
std::vector<BBoxRect> all_bbox_rects;
for (size_t b = 0; b < bottom_blobs.size(); b++)
{
std::vector<std::vector<BBoxRect> > all_box_bbox_rects;
all_box_bbox_rects.resize(m_num_box);
const TMat& bottom_top_blobs = bottom_blobs[b];
int w = bottom_top_blobs.w;
int h = bottom_top_blobs.h;
int channels = bottom_top_blobs.c;
//printf("%d %d %d\n", w, h, channels);
const int channels_per_box = channels / m_num_box;
// anchor coord + box score + num_class
if (channels_per_box != 4 + 1 + m_num_class)
return -1;
size_t mask_offset = b * m_num_box;
int net_w = (int)(m_anchors_scale[b] * w);
int net_h = (int)(m_anchors_scale[b] * h);
//printf("%d %d\n", net_w, net_h);
//printf("%d %d %d\n", w, h, channels);
for (int pp = 0; pp < m_num_box; pp++)
{
int p = pp * channels_per_box;
int biases_index = (int)(m_mask[pp + mask_offset]);
//printf("%d\n", biases_index);
const float bias_w = m_biases[biases_index * 2];
const float bias_h = m_biases[biases_index * 2 + 1];
//printf("%f %f\n", bias_w, bias_h);
const float* xptr = bottom_top_blobs.channel(p);
const float* yptr = bottom_top_blobs.channel(p + 1);
const float* wptr = bottom_top_blobs.channel(p + 2);
const float* hptr = bottom_top_blobs.channel(p + 3);
const float* box_score_ptr = bottom_top_blobs.channel(p + 4);
// softmax class scores
TMat scores = bottom_top_blobs.channel_range(p + 5, m_num_class);
//softmax->forward_inplace(scores, opt);
for (int i = 0; i < h; i++)
{
for (int j = 0; j < w; j++)
{
// find class index with max class score
int class_index = 0;
float class_score = -FLT_MAX;
for (int q = 0; q < m_num_class; q++)
{
float score = scores.channel(q).row(i)[j];
if (score > class_score)
{
class_index = q;
class_score = score;
}
}
//sigmoid(box_score) * sigmoid(class_score)
float confidence = 1.f / ((1.f + exp(-box_score_ptr[0]) * (1.f + exp(-class_score))));
if (confidence >= m_confidence_threshold)
{
// region box
float bbox_cx = (j + sigmoid(xptr[0])) / w;
float bbox_cy = (i + sigmoid(yptr[0])) / h;
float bbox_w = (float)(exp(wptr[0]) * bias_w / net_w);
float bbox_h = (float)(exp(hptr[0]) * bias_h / net_h);
float bbox_xmin = bbox_cx - bbox_w * 0.5f;
float bbox_ymin = bbox_cy - bbox_h * 0.5f;
float bbox_xmax = bbox_cx + bbox_w * 0.5f;
float bbox_ymax = bbox_cy + bbox_h * 0.5f;
float area = bbox_w * bbox_h;
BBoxRect c = {confidence, bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax, area, class_index};
all_box_bbox_rects[pp].push_back(c);
}
xptr++;
yptr++;
wptr++;
hptr++;
box_score_ptr++;
}
}
}
for (int i = 0; i < m_num_box; i++)
{
const std::vector<BBoxRect>& box_bbox_rects = all_box_bbox_rects[i];
all_bbox_rects.insert(all_bbox_rects.end(), box_bbox_rects.begin(), box_bbox_rects.end());
}
}
// global sort inplace
qsort_descent_inplace(all_bbox_rects);
// apply nms
std::vector<size_t> picked;
nms_sorted_bboxes(all_bbox_rects, picked, m_nms_threshold);
// select
std::vector<BBoxRect> bbox_rects;
for (size_t i = 0; i < picked.size(); i++)
{
size_t z = picked[i];
bbox_rects.push_back(all_bbox_rects[z]);
}
// fill result
int num_detected = (int)(bbox_rects.size());
if (num_detected == 0)
return 0;
TMat& top_blob = top_blobs[0];
for (int i = 0; i < num_detected; i++)
{
const BBoxRect& r = bbox_rects[i];
float score = r.score;
float* outptr = top_blob.row(i);
outptr[0] = (float)(r.label + 1); // +1 for prepend background class
outptr[1] = score;
outptr[2] = r.xmin;
outptr[3] = r.ymin;
outptr[4] = r.xmax;
outptr[5] = r.ymax;
}
top_blob.h = num_detected;
return 0;
}
static void get_input_data_darknet(const char* image_file, float* input_data, int net_h, int net_w)
{
float mean[3] = {0.f, 0.f, 0.f};
float scale[3] = {1.0f / 255, 1.0f / 255, 1.0f / 255};
//no letter box by default
get_input_data(image_file, input_data, net_h, net_w, mean, scale);
// input rgb
image swaprgb_img = {0};
swaprgb_img.c = 3;
swaprgb_img.w = net_w;
swaprgb_img.h = net_h;
swaprgb_img.data = input_data;
rgb2bgr_permute(swaprgb_img);
}
static void show_usage()
{
fprintf(stderr, "[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count]\n");
}
static void run_yolo(graph_t graph, std::vector<BBoxRect>& boxes, int img_width, int img_height)
{
Yolov3DetectionOutput yolo;
std::vector<TMat> yolo_inputs, yolo_outputs;
yolo.init(YOLO_FASTEST);
int output_node_num = get_graph_output_node_number(graph);
yolo_inputs.resize(output_node_num);
yolo_outputs.resize(1);
for (int i = 0; i < output_node_num; ++i)
{
tensor_t out_tensor = get_graph_output_tensor(graph, i, 0); //"detection_out"
int out_dim[4] = {0};
get_tensor_shape(out_tensor, out_dim, 4);
yolo_inputs[i].batch = out_dim[0];
yolo_inputs[i].c = out_dim[1];
yolo_inputs[i].h = out_dim[2];
yolo_inputs[i].w = out_dim[3];
yolo_inputs[i].data = get_tensor_buffer(out_tensor);
}
std::vector<float> output_buf;
output_buf.resize(1000 * 6, 0);
yolo_outputs[0].batch = 1;
yolo_outputs[0].c = 1;
yolo_outputs[0].h = 1000;
yolo_outputs[0].w = 6;
yolo_outputs[0].data = output_buf.data();
yolo.forward(yolo_inputs, yolo_outputs);
//image roi on net input
bool letterbox = false;
float roi_left = 0.f, roi_top = 0.f, roi_width = 1.f, roi_height = 1.f;
if (letterbox)
{
if (img_width > img_height)
{
roi_height = img_height / (float)img_width;
roi_top = (1 - roi_height) / 2;
}
else
{
roi_width = img_width / (float)img_height;
roi_left = (1 - roi_width) / 2;
}
}
//rect correct
for (int i = 0; i < yolo_outputs[0].h; i++)
{
float* data_row = yolo_outputs[0].row(i);
BBoxRect box = {0};
box.score = data_row[1];
box.label = data_row[0];
box.xmin = (data_row[2] - roi_left) / roi_width * img_width;
box.ymin = (data_row[3] - roi_top) / roi_height * img_height;
box.xmax = (data_row[4] - roi_left) / roi_width * img_width;
box.ymax = (data_row[5] - roi_top) / roi_height * img_height;
boxes.push_back(box);
}
//release
for (int i = 0; i < output_node_num; ++i)
{
tensor_t out_tensor = get_graph_output_tensor(graph, i, 0);
release_graph_tensor(out_tensor);
}
}
int main(int argc, char* argv[])
{
int repeat_count = DEFAULT_REPEAT_COUNT;
int num_thread = DEFAULT_THREAD_COUNT;
char* model_file = nullptr;
char* image_file = nullptr;
int net_w = 320;
int net_h = 320;
int res;
while ((res = getopt(argc, argv, "m:i:r:t:h:")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'r':
repeat_count = std::strtoul(optarg, nullptr, 10);
break;
case 't':
num_thread = std::strtoul(optarg, nullptr, 10);
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (nullptr == model_file)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (nullptr == image_file)
{
fprintf(stderr, "Error: Image file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(image_file))
return -1;
/* set runtime options */
struct options opt;
opt.num_thread = num_thread;
opt.cluster = TENGINE_CLUSTER_ALL;
opt.precision = TENGINE_MODE_FP32;
opt.affinity = 0;
/* inital tengine */
if (init_tengine() != 0)
{
fprintf(stderr, "Initial tengine failed.\n");
return -1;
}
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* create graph, load tengine model xxx.tmfile */
graph_t graph = create_graph(nullptr, "tengine", model_file);
if (graph == nullptr)
{
fprintf(stderr, "Create graph failed.\n");
return -1;
}
/* set the input shape to initial the graph, and prerun graph to infer shape */
int img_size = net_h * net_w * 3;
int dims[] = {1, 3, net_h, net_w}; // nchw
std::vector<float> input_data(img_size);
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0);
if (input_tensor == nullptr)
{
fprintf(stderr, "Get input tensor failed\n");
return -1;
}
if (set_tensor_shape(input_tensor, dims, 4) < 0)
{
fprintf(stderr, "Set input tensor shape failed\n");
return -1;
}
if (set_tensor_buffer(input_tensor, input_data.data(), img_size * sizeof(float)) < 0)
{
fprintf(stderr, "Set input tensor buffer failed\n");
return -1;
}
/* prerun graph, set work options(num_thread, cluster, precision) */
if (prerun_graph_multithread(graph, opt) < 0)
{
fprintf(stderr, "Prerun multithread graph failed.\n");
return -1;
}
/* prepare process input data, set the data mem to input tensor */
get_input_data_darknet(image_file, input_data.data(), net_h, net_w);
/* run graph */
double min_time = DBL_MAX;
double max_time = DBL_MIN;
double total_time = 0.;
for (int i = 0; i < repeat_count; i++)
{
double start = get_current_time();
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "Run graph failed\n");
return -1;
}
double end = get_current_time();
double cur = end - start;
total_time += cur;
min_time = std::min(min_time, cur);
max_time = std::max(max_time, cur);
}
fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n", repeat_count,
num_thread, total_time / repeat_count, max_time, min_time);
fprintf(stderr, "--------------------------------------\n");
/* process the detection result */
image img = imread(image_file);
std::vector<BBoxRect> boxes;
run_yolo(graph, boxes, img.w, img.h);
for (int i = 0; i < (int)boxes.size(); ++i)
{
BBoxRect b = boxes[i];
draw_box(img, b.xmin, b.ymin, b.xmax, b.ymax, 2, 125, 0, 125);
fprintf(stderr, "%2d: %3.0f%%, [%4.0f, %4.0f, %4.0f, %4.0f], %s\n", b.label, b.score * 100, b.xmin, b.ymin, b.xmax, b.ymax, class_names[b.label]);
}
save_image(img, "yolofastest_out");
/* release tengine */
free_image(img);
release_graph_tensor(input_tensor);
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
return 0;
}