Skip to content

Latest commit

 

History

History
201 lines (167 loc) · 9.74 KB

README.md

File metadata and controls

201 lines (167 loc) · 9.74 KB

Tengine Post Training Quantization Tools

To support int8 model deployment on AIoT devices, we provide some universal post training quantization tools which can convert the Float32 tmfile model to Int8/UInt8 tmfile model.

1 Compile

1.1 Install dependent libraries

sudo apt install libopencv-dev

1.2 Compile from source file

git clone https://github.com/OAID/Tengine.git  tengine-lite
cd tengine-lite
mkdir build 
cd build
cmake -DTENGINE_BUILD_QUANT_TOOL=ON ..
make && make install

Those quantization tools should be in ./install/bin/ directory

$ tree install/bin/
install/bin/
├── quant_tool_int8
├── quant_tool_uint8
├── ......

2 Symmetric per-channel quantization tool

Type Note
Adaptive TENGINE_MODE_INT8
Activation data Int8
Weight date Int8
Bias date Int32
Example tm_classification_int8.c
Execution environment Ubuntu 18.04

2.1 Description params

$ ./quant_tool_int8 -h
---- Tengine Post Training Quantization Tool ----

Version     : v1.2, 15:20:21 Jul 25 2021
Status      : int8, per-channel, symmetric
[Quant Tools Info]: The input file of Float32 tmfile file not specified!
[Quant Tools Info]: optional arguments:
        -h    help            show this help message and exit
        -m    input model     path to input float32 tmfile
        -i    image dir       path to calibration images folder
        -f    scale file      path to calibration scale file
        -o    output model    path to output int8 tmfile
        -a    algorithm       the type of quant algorithm(0:min-max, 1:kl, default is 0)
        -g    size            the size of input image(using the resize the original image,default is 3,224,224)
        -w    mean            value of mean (mean value, default is 104.0,117.0,123.0)
        -s    scale           value of normalize (scale value, default is 1.0,1.0,1.0)
        -b    swapRB          flag which indicates that swap first and last channels in 3-channel image is necessary(0:OFF, 1:ON, default is 1)
        -c    center crop     flag which indicates that center crop process image is necessary(0:OFF, 1:ON, default is 0)
        -y    letter box      the size of letter box process image is necessary([rows, cols], default is [0, 0])
        -k    focus           flag which indicates that focus process image is necessary(maybe using for YOLOv5, 0:OFF, 1:ON, default is 0)
        -t    num thread      count of processing threads(default is 1)

[Quant Tools Info]: example arguments:
        ./quant_tool_int8 -m ./mobilenet_fp32.tmfile -i ./dataset -o ./mobilenet_int8.tmfile -g 3,224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017

2.2 Demo

Before use the quant tool, you need Float32 tmfile and Calibration Dataset, the image num of calibration dataset we suggest to use 500-1000.

$ .quant_tool_int8  -m ./mobilenet_fp32.tmfile -i ./dataset -o ./mobilenet_int8.tmfile -g 3,224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017

---- Tengine Post Training Quantization Tool ----

Version     : v1.1, 15:46:24 Mar 14 2021
Status      : int8, per-channel, symmetric
Input model : ./mobilenet_fp32.tmfile
Output model: ./mobilenet_int8.tmfile
Calib images: ./dataset
Algorithm   : KL
Dims        : 3 224 224
Mean        : 104.007 116.669 122.679
Scale       : 0.017 0.017 0.017
BGR2RGB     : ON
Center crop : OFF
Letter box  : OFF
Thread num  : 1

[Quant Tools Info]: Step 0, load FP32 tmfile.
[Quant Tools Info]: Step 0, load FP32 tmfile done.
[Quant Tools Info]: Step 0, load calibration image files.
[Quant Tools Info]: Step 0, load calibration image files done, image num is 55.
[Quant Tools Info]: Step 1, find original calibration table.
[Quant Tools Info]: Step 1, find original calibration table done, output ./table_minmax.scale
[Quant Tools Info]: Step 2, find calibration table.
[Quant Tools Info]: Step 2, find calibration table done, output ./table_kl.scale
[Quant Tools Info]: Thread 1, image nums 55, total time 1964.24 ms, avg time 35.71 ms
[Quant Tools Info]: Calibration file is using table_kl.scale
[Quant Tools Info]: Step 3, load FP32 tmfile once again
[Quant Tools Info]: Step 3, load FP32 tmfile once again done.
[Quant Tools Info]: Step 3, load calibration table file table_kl.scale.
[Quant Tools Info]: Step 4, optimize the calibration table.
[Quant Tools Info]: Step 4, quantize activation tensor done.
[Quant Tools Info]: Step 5, quantize weight tensor done.
[Quant Tools Info]: Step 6, save Int8 tmfile done, ./mobilenet_int8.tmfile

---- Tengine Int8 tmfile create success, best wish for your INT8 inference has a low accuracy loss...\(^0^)/ ----

3 Asymmetric per-layer quantization tool

Type Note
Adaptive TENGINE_MODE_UINT8
Activation data UInt8
Weight date UInt8
Bias date Int32
Example tm_classification_uint8.c
Execution environment Ubuntu 18.04

3.1 Description params

$ ./quant_tool_uint8 -h
---- Tengine Post Training Quantization Tool ----

Version     : v1.2, 15:20:08 Jul 25 2021
Status      : uint8, per-layer, asymmetric
[Quant Tools Info]: The input file of Float32 tmfile file not specified!
[Quant Tools Info]: optional arguments:
        -h    help            show this help message and exit
        -m    input model     path to input float32 tmfile
        -i    image dir       path to calibration images folder
        -f    scale file      path to calibration scale file
        -o    output model    path to output uint8 tmfile
        -a    algorithm       the type of quant algorithm(0:min-max, 1:kl, default is 0)
        -g    size            the size of input image(using the resize the original image,default is 3,224,224)
        -w    mean            value of mean (mean value, default is 104.0,117.0,123.0)
        -s    scale           value of normalize (scale value, default is 1.0,1.0,1.0)
        -b    swapRB          flag which indicates that swap first and last channels in 3-channel image is necessary(0:OFF, 1:ON, default is 1)
        -c    center crop     flag which indicates that center crop process image is necessary(0:OFF, 1:ON, default is 0)
        -y    letter box      the size of letter box process image is necessary([rows, cols], default is [0, 0])
        -k    focus           flag which indicates that focus process image is necessary(maybe using for YOLOv5, 0:OFF, 1:ON, default is 0)
        -t    num thread      count of processing threads(default is 1)

[Quant Tools Info]: example arguments:
        ./quant_tool_uint8 -m ./mobilenet_fp32.tmfile -i ./dataset -o ./mobilenet_uint8.tmfile -g 3,224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017

3.2 Demo

Before use the quant tool, you need Float32 tmfile and Calibration Dataset, the image num of calibration dataset we suggest to use 500-1000.

$ .quant_tool_uint8  -m ./mobilenet_fp32.tmfile -i ./dataset -o ./mobilenet_uint8.tmfile -g 3,224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017

---- Tengine Post Training Quantization Tool ----

Version     : v1.2, 18:32:53 May 30 2021
Status      : uint8, per-layer, asymmetric
Input model : ./mobilenet_fp32.tmfile
Output model: ./mobilenet_uint8.tmfile
Calib images: ./dataset
Scale file  : NULL
Algorithm   : MIN MAX
Dims        : 3 224 224
Mean        : 104.000 117.000 123.000
Scale       : 0.017 0.017 0.017
BGR2RGB     : ON
Center crop : OFF
Letter box  : 0 0
YOLOv5 focus: OFF
Thread num  : 4

[Quant Tools Info]: Step 0, load FP32 tmfile.
[Quant Tools Info]: Step 0, load FP32 tmfile done.
[Quant Tools Info]: Step 0, load calibration image files.
[Quant Tools Info]: Step 0, load calibration image files done, image num is 5.
[Quant Tools Info]: Step 1, find original calibration table.
[Quant Tools Info]: Step 1, images 00005 / 00005
[Quant Tools Info]: Step 1, find original calibration table done, output ./table_minmax.scale
[Quant Tools Info]: Thread 4, image nums 5, total time 37.23 ms, avg time 87.45 ms
[Quant Tools Info]: Calibration file is using table_minmax.scale
[Quant Tools Info]: Step 3, load FP32 tmfile once again
[Quant Tools Info]: Step 3, load FP32 tmfile once again done.
[Quant Tools Info]: Step 3, load calibration table file table_minmax.scale.
[Quant Tools Info]: Step 4, optimize the calibration table.
[Quant Tools Info]: Step 4, quantize activation tensor done.
[Quant Tools Info]: Step 5, quantize weight tensor done.
[Quant Tools Info]: Step 6, save Int8 tmfile done, mobilenet_uint8.tmfile

---- Tengine Int8 tmfile create success, best wish for your INT8 inference has a low accuracy loss...\(^0^)/ ----