-
Notifications
You must be signed in to change notification settings - Fork 5
/
Net_GPU_Naive.cu
214 lines (148 loc) · 5.25 KB
/
Net_GPU_Naive.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include "Net_h.h"
Net_GPU_Naive::Net_GPU_Naive()
{
//// conv1 Input = 1x32x32 Output = 8x20x20
//// pool1 Input = 8x20x20 Output = 8x5x5
//// FC1 Input = 8x5x5(200) Output = 200
//// FC2 Input = 200 Output = 200
//// FC3 Input = 200 Output = 10
conv1.init(MINIBATCH, 32, 32, 1, CONV_KERNEL_SIZE, 8);
pool1.init(MINIBATCH, 20, 20, 8,4);
fc1.init(MINIBATCH, 5*5*8, 200);
fc2.init(MINIBATCH, 200, 200);
fc3.init(MINIBATCH, 200, 10);
sm1.delta_c.resize(MINIBATCH*10, 0);
correct_num = 0;
}
Net_GPU_Naive::~Net_GPU_Naive()
{
}
void Net_GPU_Naive::train(host_vector< host_vector<float> >& Xtrain, host_vector<int>& Ytrain)
{
dim3 threadsPerBlock(TILE_WIDTH,TILE_WIDTH);
cout << "Net_GPU_Naive Train Start" << endl << fflush;
int minibatch_index = 0;
struct timespec start, finish;
double elapsed=0;
correct_num=0;
int fine_epoch=0;
float pre_acc=0;
float max_acc=0;
//// MxCxHxW M=MINIBATCH
//// CxHxW
for(int epoch=1 ; epoch <= 100 ; epoch++){
minibatch_index=0;
correct_num=0;
elapsed=0;
while(minibatch_index < NUM_TRAIN/MINIBATCH)
{
clock_gettime(CLOCK_REALTIME, &start);
conv1.X = Xtrain[minibatch_index];
conv1.forward_GPU_naive();
pool1.forward_GPU_naive(conv1.Output);
forward_bias_per_channel(pool1.Output, pool1.b, MINIBATCH,
pool1.Outputimage_channel, pool1.Outputimage_height, pool1.Outputimage_width);
forward_relu(pool1.Output, fc1.X);
fc1.forward();
forward_relu(fc1.Output, fc2.X);
fc2.forward();
forward_relu(fc2.Output, fc3.X);
fc3.X = fc2.Output;
fc3.forward();
fc3.Output_c = fc3.Output;
//// SoftMax Input = 10 Output = 10
sm1.accuracy(MINIBATCH, 10, Xtrain, Ytrain, fc3.Output_c, minibatch_index, correct_num);
sm1.softmax(MINIBATCH, 10, Ytrain, fc3.Output_c);
sm1.cross_entropy_loss(MINIBATCH, Ytrain, fc3.Output_c, 10, sm1.loss, minibatch_index);
//// SoftMax delta
sm1.softmax_backward( MINIBATCH, Ytrain, fc3.Output_c, sm1.delta_c, 10, minibatch_index);
//// fc backward
fc3.Output = sm1.delta_c;
fc3.backward();
backward_relu(fc2.Output, fc3.X);
fc2.Output = fc3.X;
fc2.backward();
backward_relu(fc1.Output, fc2.X);
fc1.backward();
backward_relu(pool1.Output, fc1.X);
backward_bias_per_channel(pool1.Output, pool1.b, MINIBATCH, pool1.Output_height, pool1.Output_width,
pool1.Outputimage_channel, pool1.Outputimage_height*pool1.Outputimage_width);
pool1.backward_GPU(fc1.X);
conv1.Output = pool1.X;
conv1.backward_GPU_gemm();
clock_gettime(CLOCK_REALTIME, &finish);
elapsed += ((double)finish.tv_sec-start.tv_sec) + ((double)finish.tv_nsec - start.tv_nsec)/ 1000000000.0;
minibatch_index += 1;
if((minibatch_index*MINIBATCH) == 60000)
{
/*
printMNIST_HW_avg_value(sm1.delta_c,"sm1.delta_c");
printMNIST_HW_avg_value(fc3.W,"fc3 w");
printMNIST_HW_avg_value(fc3.b,"fc3 b");
printMNIST_HW_avg_value(fc2.W,"fc2 w");
printMNIST_HW_avg_value(fc2.b,"fc2 b");
printMNIST_HW_avg_value(fc1.W,"fc1 w");
printMNIST_HW_avg_value(fc1.b,"fc1 b");
printMNIST_HW_avg_value(pool1.b,"pool1 b");
printMNIST_HW_avg_value(conv1.W,"conv1 w");
*/
float acc = (float)correct_num/(60000);
if(acc > max_acc)
{
max_acc = acc;
fine_epoch=epoch;
}
correct_num=0;
printf("[Epoch %d] minibatch %d (%.7lf images/sec) max_acc %.3f acc %.3f elapsed time %.3f\n",
epoch, minibatch_index , minibatch_index*MINIBATCH/elapsed, max_acc*100, acc*100, elapsed);fflush(stdin);
}
}
}
}
void Net_GPU_Naive::test(host_vector< host_vector<float> >& Xtest, host_vector<int>& Ytest)
{
dim3 threadsPerBlock(TILE_WIDTH,TILE_WIDTH);
cout << "Net_GPU_Naive Test Start" << endl << fflush;
int minibatch_index = 0;
struct timespec start, finish;
double elapsed=0;
correct_num=0;
int fine_epoch=0;
float pre_acc=0;
float max_acc=0;
//// MxCxHxW M=MINIBATCH
//// CxHxW
while(minibatch_index < NUM_TEST/MINIBATCH)
{
clock_gettime(CLOCK_REALTIME, &start);
conv1.X = Xtest[minibatch_index];
conv1.forward_GPU_naive();
pool1.forward_GPU_naive(conv1.Output);
forward_bias_per_channel(pool1.Output, pool1.b, MINIBATCH,
pool1.Outputimage_channel, pool1.Outputimage_height, pool1.Outputimage_width);
forward_relu(pool1.Output, fc1.X);
fc1.forward();
forward_relu(fc1.Output, fc2.X);
fc2.forward();
forward_relu(fc2.Output, fc3.X);
fc3.X = fc2.Output;
fc3.forward();
fc3.Output_c = fc3.Output;
//// SoftMax Input = 10 Output = 10
sm1.accuracy(MINIBATCH, 10, Xtest, Ytest, fc3.Output_c, minibatch_index, correct_num);
sm1.softmax(MINIBATCH, 10, Ytest, fc3.Output_c);
sm1.cross_entropy_loss(MINIBATCH, Ytest, fc3.Output_c, 10, sm1.loss, minibatch_index);
//// SoftMax delta
sm1.softmax_backward( MINIBATCH, Ytest, fc3.Output_c, sm1.delta_c, 10, minibatch_index);
clock_gettime(CLOCK_REALTIME, &finish);
elapsed += ((double)finish.tv_sec-start.tv_sec) + ((double)finish.tv_nsec - start.tv_nsec)/ 1000000000.0;
minibatch_index += 1;
if((minibatch_index*MINIBATCH) == 10000)
{
float acc = (float)correct_num/(10000);
correct_num=0;
printf("[Test](%.7lf images/sec) acc %.3f elapsed time %.3f\n",
minibatch_index*MINIBATCH/elapsed, acc*100, elapsed);fflush(stdin);
}
}
}