forked from yingxin-jia/SuperGlue-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
executable file
·279 lines (229 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from pathlib import Path
import argparse
import random
import numpy as np
import matplotlib.cm as cm
import torch
import torch.nn as nn
from torch.autograd import Variable
# Datasets
from datasets.sift_dataset import SIFTDataset
from datasets.superpoint_dataset import SuperPointDataset
import os
import torch.multiprocessing
from tqdm import tqdm
# torch.backends.cudnn.benchmark = True
# from models.matching import Matching
from models.utils import (compute_pose_error, compute_epipolar_error,
estimate_pose, make_matching_plot,
error_colormap, AverageTimer, pose_auc, read_image,
rotate_intrinsics, rotate_pose_inplane,
scale_intrinsics, read_image_modified)
from models.superpoint import SuperPoint
from models.superglue import SuperGlue
from models.matchingForTraining import MatchingForTraining
torch.set_grad_enabled(True)
torch.multiprocessing.set_sharing_strategy('file_system')
# os.environ["CUDA_VISIBLE_DEVICES"]="0"
# torch.multiprocessing.set_start_method("spawn")
# torch.cuda.set_device(0)
# try:
# torch.multiprocessing.set_start_method('spawn')
# except RuntimeError:
# pass
parser = argparse.ArgumentParser(
description='Image pair matching and pose evaluation with SuperGlue',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--viz', action='store_true',
help='Visualize the matches and dump the plots')
parser.add_argument(
'--eval', action='store_true',
help='Perform the evaluation'
' (requires ground truth pose and intrinsics)')
parser.add_argument(
'--detector', choices={'superpoint', 'sift'}, default='superpoint',
help='Keypoint detector')
parser.add_argument(
'--superglue', choices={'indoor', 'outdoor'}, default='indoor',
help='SuperGlue weights')
parser.add_argument(
'--max_keypoints', type=int, default=1024,
help='Maximum number of keypoints detected by Superpoint'
' (\'-1\' keeps all keypoints)')
parser.add_argument(
'--keypoint_threshold', type=float, default=0.005,
help='SuperPoint keypoint detector confidence threshold')
parser.add_argument(
'--nms_radius', type=int, default=4,
help='SuperPoint Non Maximum Suppression (NMS) radius'
' (Must be positive)')
parser.add_argument(
'--sinkhorn_iterations', type=int, default=20,
help='Number of Sinkhorn iterations performed by SuperGlue')
parser.add_argument(
'--match_threshold', type=float, default=0.2,
help='SuperGlue match threshold')
parser.add_argument(
'--resize', type=int, nargs='+', default=[640, 480],
help='Resize the input image before running inference. If two numbers, '
'resize to the exact dimensions, if one number, resize the max '
'dimension, if -1, do not resize')
parser.add_argument(
'--resize_float', action='store_true',
help='Resize the image after casting uint8 to float')
parser.add_argument(
'--cache', action='store_true',
help='Skip the pair if output .npz files are already found')
parser.add_argument(
'--show_keypoints', action='store_true',
help='Plot the keypoints in addition to the matches')
parser.add_argument(
'--fast_viz', action='store_true',
help='Use faster image visualization based on OpenCV instead of Matplotlib')
parser.add_argument(
'--viz_extension', type=str, default='png', choices=['png', 'pdf'],
help='Visualization file extension. Use pdf for highest-quality.')
parser.add_argument(
'--opencv_display', action='store_true',
help='Visualize via OpenCV before saving output images')
parser.add_argument(
'--eval_pairs_list', type=str, default='assets/scannet_sample_pairs_with_gt.txt',
help='Path to the list of image pairs for evaluation')
parser.add_argument(
'--shuffle', action='store_true',
help='Shuffle ordering of pairs before processing')
parser.add_argument(
'--max_length', type=int, default=-1,
help='Maximum number of pairs to evaluate')
parser.add_argument(
'--eval_input_dir', type=str, default='assets/scannet_sample_images/',
help='Path to the directory that contains the images')
parser.add_argument(
'--eval_output_dir', type=str, default='dump_match_pairs/',
help='Path to the directory in which the .npz results and optional,'
'visualizations are written')
parser.add_argument(
'--learning_rate', type=int, default=0.0001,
help='Learning rate')
parser.add_argument(
'--batch_size', type=int, default=1,
help='batch_size')
parser.add_argument(
'--train_path', type=str, default='assets/freiburg_sequence', # MSCOCO2014_yingxin
help='Path to the directory of training imgs.')
# parser.add_argument(
# '--nfeatures', type=int, default=1024,
# help='Number of feature points to be extracted initially, in each img.')
parser.add_argument(
'--epoch', type=int, default=20,
help='Number of epoches')
if __name__ == '__main__':
opt = parser.parse_args()
print(opt)
assert not (opt.opencv_display and not opt.viz), 'Must use --viz with --opencv_display'
assert not (opt.opencv_display and not opt.fast_viz), 'Cannot use --opencv_display without --fast_viz'
assert not (opt.fast_viz and not opt.viz), 'Must use --viz with --fast_viz'
assert not (opt.fast_viz and opt.viz_extension == 'pdf'), 'Cannot use pdf extension with --fast_viz'
# store viz results
eval_output_dir = Path(opt.eval_output_dir)
eval_output_dir.mkdir(exist_ok=True, parents=True)
print('Will write visualization images to',
'directory \"{}\"'.format(eval_output_dir))
# detector_factory = {
# 'superpoint': SuperPointDataset,
# 'sift': SIFTDataset,
# }
detector_dims = {
'superpoint': 256,
'sift': 128,
}
config = {
'superpoint': {
'nms_radius': opt.nms_radius,
'keypoint_threshold': opt.keypoint_threshold,
'max_keypoints': opt.max_keypoints,
},
'superglue': {
'weights': opt.superglue,
'sinkhorn_iterations': opt.sinkhorn_iterations,
'match_threshold': opt.match_threshold,
'descriptor_dim': detector_dims[opt.detector],
}
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Set data loader
if opt.detector == 'superpoint':
train_set = SuperPointDataset(opt.train_path, device=device, superpoint_config=config.get('superpoint', {}))
elif opt.detector == 'sift':
train_set = SIFTDataset(opt.train_path, nfeatures=opt.max_keypoints)
else:
RuntimeError('Error detector : {}'.format(opt.detector))
train_loader = torch.utils.data.DataLoader(dataset=train_set, shuffle=False, batch_size=opt.batch_size, drop_last=True)
# superpoint = SuperPoint(config.get('superpoint', {}))
superglue = SuperGlue(config.get('superglue', {}))
if torch.cuda.is_available():
# superpoint.cuda()
superglue.cuda()
else:
print("### CUDA not available ###")
optimizer = torch.optim.Adam(superglue.parameters(), lr=opt.learning_rate)
mean_loss = []
for epoch in range(1, opt.epoch+1):
epoch_loss = 0
superglue.train()
# train_loader = tqdm(train_loader)
for i, pred in enumerate(train_loader):
for k in pred:
if k != 'file_name' and k!='image0' and k!='image1':
if type(pred[k]) == torch.Tensor:
pred[k] = Variable(pred[k].cuda())
else:
pred[k] = Variable(torch.stack(pred[k]).cuda())
data = superglue(pred)
for k, v in pred.items():
pred[k] = v[0]
pred = {**pred, **data}
if pred['skip_train'] == True: # image has no keypoint
continue
superglue.zero_grad()
Loss = pred['loss']
epoch_loss += Loss.item()
mean_loss.append(Loss) # every 10 pairs
Loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch, opt.epoch, i+1, len(train_loader), torch.mean(torch.stack(mean_loss)).item())) # Loss.item()
mean_loss = []
### eval ###
# Visualize the matches.
superglue.eval()
image0, image1 = pred['image0'].cpu().numpy()[0]*255., pred['image1'].cpu().numpy()[0]*255.
kpts0, kpts1 = pred['keypoints0'].cpu().numpy()[0], pred['keypoints1'].cpu().numpy()[0]
matches, conf = pred['matches0'].cpu().detach().numpy(), pred['matching_scores0'].cpu().detach().numpy()
image0 = read_image_modified(image0, opt.resize, opt.resize_float)
image1 = read_image_modified(image1, opt.resize, opt.resize_float)
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
viz_path = eval_output_dir / '{}_matches.{}'.format(str(i), opt.viz_extension)
color = cm.jet(mconf)
stem = pred['file_name']
text = []
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color,
text, viz_path, stem, stem, opt.show_keypoints,
opt.fast_viz, opt.opencv_display, 'Matches')
# Estimate the pose and compute the pose error.
if (i+1) % 5e3 == 0:
model_out_path = "exp/model_epoch_{}.pth".format(epoch)
torch.save(superglue, model_out_path)
print ('Epoch [{}/{}], Step [{}/{}], Checkpoint saved to {}'
.format(epoch, opt.epoch, i+1, len(train_loader), model_out_path))
epoch_loss /= len(train_loader)
model_out_path = "exp/model_epoch_{}.pth".format(epoch)
torch.save(superglue, model_out_path)
print("Epoch [{}/{}] done. Epoch Loss {}. Checkpoint saved to {}"
.format(epoch, opt.epoch, epoch_loss, model_out_path))