MySQL Protocol Tutorial

Stéphane Legrand <stephleg@free.fr>

November 21, 2020

Abstract

This tutorial illustrates the use of the MySQL Protocol library, a
native OCaml implementation of the MySQL/MariaDB client protocol.

You can install this library with OPAM. The source code is available
in|the MySQL Protocol home page.

mailto:stephleg@free.fr
http://opam.ocaml.org/packages/
https://github.com/slegrand45/mysql_protocol

Contents

(1__Introduction| 4
2" Modules 4
{3 Helper functions| 4
Configuratio 5
4 g
[5__Connection| 6
6 Select databasel 6
7 Non prepared statemen 6
I prep t
I _Createl. 6
/.2 EBExecutel e 6
73 Getresull. 7
73.1 Resultwithoutrecordl 7
73.2 Resultwithrecords|. 7
[8 Prepared statement] 7
5.1 Createl. e 7
8 pare|l e 8
5.3 Executel 8
[8.3.1 Simpleexecute| 8
[8.3.2 With parameters| 8
833 Withcursor 9
84 Getresultl. e 9
8.4.1 Resultwithoutrecordl 9
8.4.2 Resultwithrecords|. 9
B5 Closestatementl 10
9 Procedure calll 10
(10 Ping server| 12
(11 Change user| 12
(12 Reset connection| 12
(13 Reset the session| 12
(14 Catching errors| 12

13

1 Introduction

The library has to be installed before using the code below. Please use the
OPAM package manager. The OCaml source code of this tutorial is available
in the examples directory.

2 Modules
First, some convenient alias for the modules used.

module Mp_client = Mysql_protocol.Mp_client

module Mp_data = Mysql_protocol.Mp_data

module Mp_execute = Mysql_protocol.Mp_execute

module Mp_result_set_packet = Mysql_protocol.Mp_result_set_packet

module Mp_capabilities = Mysql_protocol.Mp_capabilities

3 Helper functions

We define one function to print the result of SQL statements like INSERT,
UPDATE, GRANT...

let print_result sql r =
print_endline ("Result of the SQL statement \""
~sql ~ "\": \n "
~ (Mp_client.dml_dcl_result_to_string r) ~ "\n")

And two others to print the result of SELECT SQL statements.

let print_row fields row =
let print_data f =

let (field_name, field_pos) = f in
let data = List.nth row field_pos in
print_endline (" " ~ field_name ~ ": "
~ (Mp_data.to_string data))

in

let () = List.iter print_data fields in

print_endline " -- -- "

let print_set sql r =
let (fields, rows) = r.Mp_result set_packet.rows in

let () = print_endline (

"Result set for the SQL statement \"" =~ sql ~ "\": \n") in
let print_rows =
let () = List.iter (print_row fields) rows in
print_newline ()
in
print_rows

4 Configuration

To be able to connect to the database server, we first have to configure the
client.

let addr = Unix.inet_addr_loopback

let port = 3306

let sockaddr = Unix.ADDR_INET (addr, port)

(* let sockaddr = Unix.ADDR_UNIX "/path/to/file.sock" in *)

let db_user = "user_ocaml_ocmp"
let db_password = "ocmp"

let db_name = "test_ocaml_ocmp_utf8"

The database server is listening on the loopback interface and it uses the
standard port. The login to authenticate to the server is "user_ocaml_ocmp"
with the password "ocmp". And we will use the "test_ocaml_ocmp_utf8"
database.

Now, we can create a configuration.

‘let config = Mp_client.configuration ~user:db_user

“password:db_password “sockaddr:sockaddr
“databasename:db_name () in

Here, the default charset and collation is used. The default value for
charset is Ut£8 and the default value for collation is Utf8_general_ci. If
you want to specify an other value, you can use the charset parameter. For
instance:

let config = Mp_client.configuration ~“user:db_user
“password:db_password “sockaddr:sockaddr
“databasename:db_name
“charset: (Mp_charset.Latinl, Mp_charset.Latinl_swedish_ci)

() in

To have the complete list of available charset and collation, you can read
the documentation of the Mp_Charset module.

5 Connection

Now, we can connect our client to the database server.

‘let connection = Mp_client.connect

‘ “configuration:config () in

By default, the connection is not initialized right after the call to the
connect () function. It’s delayed until necessary (ie until the first real re-
quest). You can immediately force the connection by using the force param-
eter:

‘let connection = Mp_client.connect

‘ “configuration:config ~“force:true () in

6 Select database

To specify the current database, use the following function:

‘let () = Mp_client.use_database

‘ “connection:connection “databasename:db_name in

7 Non prepared statement

A non prepared statement is the simplest way to send a statement to the
server. If your statement doesn’t have any parameter (ie is a static string)
and is used only a few times, it’s usually sufficient.

WARNING: You SHOULD NOT use a non prepared statement if it con-
tains a parameter with non trusted value.

7.1 Create

The first step is to create the statement from the SQL string.

let sql =

"INSERT INTO ocmp_table (coll, col2) VALUES ('coll', 123.45)"
in
let stmt = hdp_cheni.create_statement_from_string sql in

7.2 Execute

Next, we send the statement to the server to execute it.

‘let r = hdp;chent.execute “connection:connection

‘ “statement:stmt () in

7.3 Getresult

After being executed, the statement result can be retrieved.

7.3.1 Result without record

For statement which returns only a simple result without any record (INSERT,
UPDATE, DELETE, GRANT... statement), you can use the get_result_ok ()
function.

‘let r
‘let r

Mp_client.get_result r in

Mp_client.get_result_ok r in
To print this result, use the print_result () helper function.
‘ let () = print_result sql r in

7.3.2 Result with records

For statement which returns records (typically SELECT statement), you can
use the get_result_set () function.

‘let r
‘let r

Mp_client.get_result r in

Mp_client.get_result_set r in
To print this result, use the print_set () helper function.

‘let () = print_set sql r in

8 Prepared statement

Especially when the statement includes some parameters, you should use a
prepared statement. The parameters values will then be correctly enclosed
in the statement by the database server and all special characters will be
automatically escaped. You can of course also use a prepared statement even
if the statement doesn’t have any parameter.

8.1 Create

The first step is the same as for a non prepared statement, you have to create
the statement from the SQL string with the same function.

let sql = "SELECT * FROM ocmp_table WHERE coll=7" in
let stmt = Mp_client.create_statement_from_string sql in

8.2 Prepare
Then, you prepare the statement.

‘let prep = Mp_client.prepare ~connection:connection

‘ “statement:stmt in

Once a statement has been prepared, you can execute it several times
without calling the prepare () function again.

8.3 Execute

You execute a prepared statement with the same function as for a non pre-
pared one. Nonetheless, for a prepared statement, the execute () function
may accept more parameters.

8.3.1 Simple execute

For the simplest use case (no parameter in the statement, no cursor), you
execute the statement as for a non prepared one.

‘let r = Mp_client.execute “connection:connection

‘ “statement:prep () in

8.3.2 With parameters

If you have some parameters in the statement, you first need to create the
list of these parameters in the same order of appearance as in the statement.
Please see the documentation for the Mp_data module to have a complete
list of data constructor and learn which one to use for each column types.

let params = [
Mp_data.data_varstring "col2";

| Mp_data.data_decimal (Num.num_of_string "98765/100")

‘] in
And you add the params function parameter for the execution.

‘let r = Mp_client.execute “connection:connection

‘ “statement:prep “params:params () in

8.3.3 With cursor

By default, no cursor is used when a prepared statement is executed. So the
server will always return all the corresponding records. If you want to be
able to fetch the result by parts (record by record for instance), you need to
specify the cursor option in the execute () function.

‘let stmt = Mp_client.execute “connection:connection

“statement:prep “params:params
~flag:Mp_execute.Cursor_type_read_only () in

‘WARNING: For now, only Cursor_type_read_only type is supported.

8.4 Getresult

After being executed, the statement result can be retrieved.

8.4.1 Result without record

For statement which returns only a simple result without any record (INSERT,
UPDATE, DELETE, GRANT... statement), there is no difference compared
with the non prepared statements. You can also use the get_result_ok()
function.

‘let r
‘let r

Mp_client.get_result r in

Mp_client.get_result_ok r in
To print this result, use the print_result () helper function.
‘ let () = print_result sql r in

8.4.2 Result with records

For statement which returns records (typically SELECT statement), if you
haven’t used a cursor, you cannot use fetch. So you will retrieve all the rows
with the same method as a non prepared statement.

‘let r
‘let r

Mp_client.get_result r in

Mp_client.get_result_set r in
To print this result, use the print_set () helper function.

‘1et () = print_set sql r in

If you have used a cursor, you have to use fetch to retrieve the records.
By default, the fetch() function get one record at each call. To specify an
other number, use the nb_rows function parameter.

let stmt = hdp_chent.execute “connection:connection
“statement:prep “params:params
~flag:Mp_execute.Cursor_type_read_only () in
let O =
try
while true do
let rows = Mp_client.fetch
“connection:connection
“statement:stmt ()
in
let rows = Mp_client.get_fetch_result_set
Tows
in
print_set sql rows
done
with
| Mp_client.Fetch_no_more_rows -> ()

in

8.5 Close statement

When a prepared statement has become useless (ie you don’t need to execute
it again), you can and should destroy it.

‘1et () = Mp_client.close_statement

‘ “connection:connection “statement:prep in

9 Procedure call
First we create the stored procedure after checking if it was already defined.

let sql = "DROP PROCEDURE IF EXISTS ocmp_proc" in
let stmt = hdp_chent.create_statement_from_string sql in
let _ = hdp;chent.execute “connection:connection

“statement:stmt ()
in

let sql =

10

"CREATE PROCEDURE ocmp_proc() "
~ "BEGIN SELECT * FROM ocmp_table; END"

in

let stmt = de_cheni.create_statement_from_string
sql in

let r = hdp_chent.execute “connection:connection

“statement:stmt ()

in
let r = Mp_client.get_result r in
let r = Mp_client.get_result_ok r in

let () = print_result sql r in

Next we call the stored procedure. The result type of execute() is 1ist
result so we use the helper function £ () to extract the value we need.
WARNING: To use stored procedures, the capabilities defined for
the connection configuration MUST include the capability named
Client_multi_results. This is the default.

let sql = "CALL ocmp_proc()" in
let stmt = hdp_chent.create_statement_from_string
sql
in
let r = Bﬂp_chent.execute “connection:connection
“statement:stmt ()
in
let r = Mp_client.get_result_multiple r in
let £ e =
try
let rs = Mp_client.get_result_set e in
print_set sql rs
with
| Failure _ ->
let rs = Mp_client.get_result_ok e in
let affected_rows = rs.hdp_chent.affected_rows in
print_endline (Printf.sprintf
"Result OK: affected rows=),Ld" affected_rows)
in
let () = List.iter f r in

11

10 Ping server

To avoid a timeout or to test the connection, you can send a ping to the server.
No result is returned but an Mp_client .Error exception can be raised.

‘let () = Mp_client.ping “connection:connection in

11 Change user
Connect to the same server with a different user and/or database.

let _ = Mp_client.change_user
“connection:connection
“user:'"db_user"
“password:"db_password"
“databasename: "db_name" ()
in

12 Reset connection

Reset connection without re-authentication. This is useful if you need to
destroy the session context (temporary tables, session variables, etc.) in the
database server.

‘let () = Mp_client.reset_connection
‘ “connection:connection in

13 Reset the session

Disconnect and reconnect.

‘let () = Mp_client.reset_session

‘ “connection:connection in

14 Catching errors

Whenever the database server returns an error, an Mp_client .Error excep-
tion is raised.

‘let stmt = Mpfclient.create_statement_from_string
‘ ("BAD SQL QUERY") in

12

let () =

try
let _ = Mp_client.execute
“connection:connection “statement:stmt () in
O
with

| Mp_client.Error error ->
print_newline ();
print_endline ("Catch error, exception is: "
~ (Mp_client.error_exception_to_string error))

in

15 Disconnect
To close the connection to the server, use the disconnect () function.

‘let O = hdp_cheni.disconnect “connection:connection in

13

	Introduction
	Modules
	Helper functions
	Configuration
	Connection
	Select database
	Non prepared statement
	Create
	Execute
	Get result
	Result without record
	Result with records

	Prepared statement
	Create
	Prepare
	Execute
	Simple execute
	With parameters
	With cursor

	Get result
	Result without record
	Result with records

	Close statement

	Procedure call
	Ping server
	Change user
	Reset connection
	Reset the session
	Catching errors
	Disconnect

