-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrealtime_detect.py
253 lines (201 loc) · 9.12 KB
/
realtime_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import colorsys
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import cv2
import pyautogui
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import image_preporcess
import multiprocessing
from multiprocessing import Pipe
import mss
import time
# set start time to current time
start_time = time.time()
shoot_time = time.time()
# displays the frame rate every 2 second
display_time = 2
# Set primarry FPS to 0
fps = 0
sct = mss.mss()
# Set monitor size to capture
monitor = {"top": 40, "left": 0, "width": 800, "height": 800}
width = 1920 # 800
height = 1080 # 640
def Shoot(mid_x, mid_y):
x = int(mid_x * width)
# y = int(mid_y*height)
y = int(mid_y * height + height / 9)
pyautogui.moveTo(x, y)
pyautogui.click()
class YOLO(object):
_defaults = {
# "model_path": 'logs/ep050-loss21.173-val_loss19.575.h5',
"model_path": 'weighted_files/osrs_cow2_trained_weights_final.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'weighted_files/cow2_CLASS_test_classes.txt',
"score": 0.7,
"iou": 0.45,
"model_image_size": (416, 416),
"text_size": 3,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
def __init__(self, **kwargs):
self.__dict__.update(self._defaults) # set up default values
self.__dict__.update(kwargs) # and update with user overrides
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors == 6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2,))
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
def detect_image(self, image):
if self.model_image_size != (None, None):
assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required'
boxed_image = image_preporcess(np.copy(image), tuple(reversed(self.model_image_size)))
image_data = boxed_image
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.shape[0], image.shape[1]], # [image.size[1], image.size[0]],
K.learning_phase(): 0
})
# print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
thickness = (image.shape[0] + image.shape[1]) // 600
fontScale = 1
ObjectsList = []
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
# label = '{}'.format(predicted_class)
scores = '{:.2f}'.format(score)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.shape[0], np.floor(bottom + 0.5).astype('int32'))
right = min(image.shape[1], np.floor(right + 0.5).astype('int32'))
mid_h = (bottom - top) / 2 + top
mid_v = (right - left) / 2 + left
# put object rectangle
cv2.rectangle(image, (left, top), (right, bottom), self.colors[c], thickness)
# get text size
(test_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,
thickness / self.text_size, 1)
# put text rectangle
cv2.rectangle(image, (left, top), (left + test_width, top - text_height - baseline), self.colors[c],
thickness=cv2.FILLED)
# put text above rectangle
cv2.putText(image, label, (left, top - 2), cv2.FONT_HERSHEY_SIMPLEX, thickness / self.text_size, (0, 0, 0),
1)
# add everything to list
ObjectsList.append([top, left, bottom, right, mid_v, mid_h, label, scores])
array_c = []
print(predicted_class)
print(scores)
print(box)
# ------------------------- CHANGE CLASS --------------------------
if predicted_class == 'cow': # c
if float(scores) >= 0.01:
mid_x = (box[1] + box[3]) / 2
mid_y = box[0] + (box[2] - box[0]) / 6
array_c.append([mid_x, mid_y])
if len(array_c) > 0:
# Shoot(array_c[0][0], array_c[0][1])
print(box[0], box[1])
return image, ObjectsList
def close_session(self):
self.sess.close()
def detect_img(self, image):
image = cv2.imread(image, cv2.IMREAD_COLOR)
original_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_image_color = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
r_image, ObjectsList = self.detect_image(original_image_color)
return r_image, ObjectsList
def GRABMSS_screen(p_input):
while True:
# Grab screen image
img = np.array(sct.grab(monitor))
# Put image from pipe
p_input.send(img)
def SHOWMSS_screen(p_output):
global fps, start_time
yolo = YOLO()
while True:
img = p_output.recv()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
r_image, ObjectsList = yolo.detect_image(img)
cv2.imshow("YOLO v3", r_image)
if cv2.waitKey(1) & 0xFF == ord("q"):
cv2.destroyAllWindows()
return
fps += 1
TIME = time.time() - start_time
if (TIME) >= display_time:
print("FPS: ", fps / (TIME))
fps = 0
start_time = time.time()
if cv2.waitKey(1) & 0xFF == ord('q'): break
yolo.close_session()
if __name__ == "__main__":
p_output, p_input = Pipe()
# creating new processes
p1 = multiprocessing.Process(target=GRABMSS_screen, args=(p_input,))
p2 = multiprocessing.Process(target=SHOWMSS_screen, args=(p_output,))
# starting our processes
p1.start()
p2.start()