-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathtrain.py
65 lines (54 loc) · 3.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
Copyright Snap Inc. 2021. This sample code is made available by Snap Inc. for informational purposes only.
No license, whether implied or otherwise, is granted in or to such code (including any rights to copy, modify,
publish, distribute and/or commercialize such code), unless you have entered into a separate agreement for such rights.
Such code is provided as-is, without warranty of any kind, express or implied, including any warranties of merchantability,
title, fitness for a particular purpose, non-infringement, or that such code is free of defects, errors or viruses.
In no event will Snap Inc. be liable for any damages or losses of any kind arising from the sample code or your use thereof.
"""
from tqdm import trange
import torch
from torch.utils.data import DataLoader
from logger import Logger
from modules.model import ReconstructionModel
from torch.optim.lr_scheduler import MultiStepLR
from sync_batchnorm import DataParallelWithCallback
from frames_dataset import DatasetRepeater
def train(config, generator, region_predictor, bg_predictor, checkpoint, log_dir, dataset, device_ids):
train_params = config['train_params']
optimizer = torch.optim.Adam(list(generator.parameters()) +
list(region_predictor.parameters()) +
list(bg_predictor.parameters()), lr=train_params['lr'], betas=(0.5, 0.999))
if checkpoint is not None:
start_epoch = Logger.load_cpk(checkpoint, generator, region_predictor, bg_predictor, None,
optimizer, None)
else:
start_epoch = 0
scheduler = MultiStepLR(optimizer, train_params['epoch_milestones'], gamma=0.1, last_epoch=start_epoch - 1)
if 'num_repeats' in train_params or train_params['num_repeats'] != 1:
dataset = DatasetRepeater(dataset, train_params['num_repeats'])
dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=True,
num_workers=train_params['dataloader_workers'], drop_last=True)
model = ReconstructionModel(region_predictor, bg_predictor, generator, train_params)
if torch.cuda.is_available():
if ('use_sync_bn' in train_params) and train_params['use_sync_bn']:
model = DataParallelWithCallback(model, device_ids=device_ids)
else:
model = torch.nn.DataParallel(model, device_ids=device_ids)
with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'],
checkpoint_freq=train_params['checkpoint_freq']) as logger:
for epoch in trange(start_epoch, train_params['num_epochs']):
for x in dataloader:
losses, generated = model(x)
loss_values = [val.mean() for val in losses.values()]
loss = sum(loss_values)
loss.backward()
optimizer.step()
optimizer.zero_grad()
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses.items()}
logger.log_iter(losses=losses)
scheduler.step()
logger.log_epoch(epoch, {'generator': generator,
'bg_predictor': bg_predictor,
'region_predictor': region_predictor,
'optimizer_reconstruction': optimizer}, inp=x, out=generated)