经过训练的三阶多项式,可以通过最小化平方的欧几里得距离来预测y = sin(x)
从-pi
到pi
。
此实现使用 PyTorch 张量手动计算正向传播,损失和后向通过。
PyTorch 张量基本上与 numpy 数组相同:它对深度学习或计算图或梯度一无所知,只是用于任意数值计算的通用 n 维数组。
numpy 数组和 PyTorch 张量之间的最大区别是 PyTorch 张量可以在 CPU 或 GPU 上运行。 要在 GPU 上运行操作,只需将张量转换为 cuda 数据类型。
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
脚本的总运行时间:(0 分钟 0.000 秒)
下载 Python 源码:polynomial_tensor.py
下载 Jupyter 笔记本:polynomial_tensor.ipynb
由 Sphinx 画廊生成的画廊