Skip to content

Latest commit

 

History

History
77 lines (58 loc) · 3.24 KB

10.md

File metadata and controls

77 lines (58 loc) · 3.24 KB

PyTorch:张量和 Autograd

原文:https://pytorch.org/tutorials/beginner/examples_autograd/polynomial_autograd.html#sphx-glr-beginner-examples-autograd-polynomial-autograd-py

经过训练的三阶多项式,可以通过最小化平方的欧几里得距离来预测y = sin(x)-pipi

此实现使用 PyTorch 张量上的运算来计算正向传播,并使用 PyTorch Autograd 来计算梯度。

PyTorch 张量表示计算图中的一个节点。 如果x是具有x.requires_grad=True的张量,则x.grad是另一个张量,其保持x相对于某个标量值的梯度。

import torch
import math

dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0")  # Uncomment this to run on GPU

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
d = torch.randn((), device=device, dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y using operations on Tensors.
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss using operations on Tensors.
    # Now loss is a Tensor of shape (1,)
    # loss.item() gets the scalar value held in the loss.
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass. This call will compute the
    # gradient of loss with respect to all Tensors with requires_grad=True.
    # After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
    # the gradient of the loss with respect to a, b, c, d respectively.
    loss.backward()

    # Manually update weights using gradient descent. Wrap in torch.no_grad()
    # because weights have requires_grad=True, but we don't need to track this
    # in autograd.
    with torch.no_grad():
        a -= learning_rate * a.grad
        b -= learning_rate * b.grad
        c -= learning_rate * c.grad
        d -= learning_rate * d.grad

        # Manually zero the gradients after updating weights
        a.grad = None
        b.grad = None
        c.grad = None
        d.grad = None

print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

脚本的总运行时间:(0 分钟 0.000 秒)

下载 Python 源码:polynomial_autograd.py

下载 Jupyter 笔记本:polynomial_autograd.ipynb

由 Sphinx 画廊生成的画廊