forked from RosettaCommons/RFdiffusion
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutil_module.py
310 lines (248 loc) · 10 KB
/
util_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from opt_einsum import contract as einsum
import copy
import dgl
from util import base_indices, RTs_by_torsion, xyzs_in_base_frame, rigid_from_3_points
def init_lecun_normal(module, scale=1.0):
def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2):
normal = torch.distributions.normal.Normal(0, 1)
alpha = (a - mu) / sigma
beta = (b - mu) / sigma
alpha_normal_cdf = normal.cdf(torch.tensor(alpha))
p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform
v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8)
x = mu + sigma * np.sqrt(2) * torch.erfinv(v)
x = torch.clamp(x, a, b)
return x
def sample_truncated_normal(shape, scale=1.0):
stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in
return stddev * truncated_normal(torch.rand(shape))
module.weight = torch.nn.Parameter( (sample_truncated_normal(module.weight.shape)) )
return module
def init_lecun_normal_param(weight, scale=1.0):
def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2):
normal = torch.distributions.normal.Normal(0, 1)
alpha = (a - mu) / sigma
beta = (b - mu) / sigma
alpha_normal_cdf = normal.cdf(torch.tensor(alpha))
p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform
v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8)
x = mu + sigma * np.sqrt(2) * torch.erfinv(v)
x = torch.clamp(x, a, b)
return x
def sample_truncated_normal(shape, scale=1.0):
stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in
return stddev * truncated_normal(torch.rand(shape))
weight = torch.nn.Parameter( (sample_truncated_normal(weight.shape)) )
return weight
# for gradient checkpointing
def create_custom_forward(module, **kwargs):
def custom_forward(*inputs):
return module(*inputs, **kwargs)
return custom_forward
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class Dropout(nn.Module):
# Dropout entire row or column
def __init__(self, broadcast_dim=None, p_drop=0.15):
super(Dropout, self).__init__()
# give ones with probability of 1-p_drop / zeros with p_drop
self.sampler = torch.distributions.bernoulli.Bernoulli(torch.tensor([1-p_drop]))
self.broadcast_dim=broadcast_dim
self.p_drop=p_drop
def forward(self, x):
if not self.training: # no drophead during evaluation mode
return x
shape = list(x.shape)
if not self.broadcast_dim == None:
shape[self.broadcast_dim] = 1
mask = self.sampler.sample(shape).to(x.device).view(shape)
x = mask * x / (1.0 - self.p_drop)
return x
def rbf(D):
# Distance radial basis function
D_min, D_max, D_count = 0., 20., 36
D_mu = torch.linspace(D_min, D_max, D_count).to(D.device)
D_mu = D_mu[None,:]
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
return RBF
def get_seqsep(idx):
'''
Input:
- idx: residue indices of given sequence (B,L)
Output:
- seqsep: sequence separation feature with sign (B, L, L, 1)
Sergey found that having sign in seqsep features helps a little
'''
seqsep = idx[:,None,:] - idx[:,:,None]
sign = torch.sign(seqsep)
neigh = torch.abs(seqsep)
neigh[neigh > 1] = 0.0 # if bonded -- 1.0 / else 0.0
neigh = sign * neigh
return neigh.unsqueeze(-1)
def make_full_graph(xyz, pair, idx, top_k=64, kmin=9):
'''
Input:
- xyz: current backbone cooordinates (B, L, 3, 3)
- pair: pair features from Trunk (B, L, L, E)
- idx: residue index from ground truth pdb
Output:
- G: defined graph
'''
B, L = xyz.shape[:2]
device = xyz.device
# seq sep
sep = idx[:,None,:] - idx[:,:,None]
b,i,j = torch.where(sep.abs() > 0)
src = b*L+i
tgt = b*L+j
G = dgl.graph((src, tgt), num_nodes=B*L).to(device)
G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function
return G, pair[b,i,j][...,None]
def make_topk_graph(xyz, pair, idx, top_k=64, kmin=32, eps=1e-6):
'''
Input:
- xyz: current backbone cooordinates (B, L, 3, 3)
- pair: pair features from Trunk (B, L, L, E)
- idx: residue index from ground truth pdb
Output:
- G: defined graph
'''
B, L = xyz.shape[:2]
device = xyz.device
# distance map from current CA coordinates
D = torch.cdist(xyz, xyz) + torch.eye(L, device=device).unsqueeze(0)*999.9 # (B, L, L)
# seq sep
sep = idx[:,None,:] - idx[:,:,None]
sep = sep.abs() + torch.eye(L, device=device).unsqueeze(0)*999.9
D = D + sep*eps
# get top_k neighbors
D_neigh, E_idx = torch.topk(D, min(top_k, L), largest=False) # shape of E_idx: (B, L, top_k)
topk_matrix = torch.zeros((B, L, L), device=device)
topk_matrix.scatter_(2, E_idx, 1.0)
# put an edge if any of the 3 conditions are met:
# 1) |i-j| <= kmin (connect sequentially adjacent residues)
# 2) top_k neighbors
cond = torch.logical_or(topk_matrix > 0.0, sep < kmin)
b,i,j = torch.where(cond)
src = b*L+i
tgt = b*L+j
G = dgl.graph((src, tgt), num_nodes=B*L).to(device)
G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function
return G, pair[b,i,j][...,None]
def make_rotX(angs, eps=1e-6):
B,L = angs.shape[:2]
NORM = torch.linalg.norm(angs, dim=-1) + eps
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1)
RTs[:,:,1,1] = angs[:,:,0]/NORM
RTs[:,:,1,2] = -angs[:,:,1]/NORM
RTs[:,:,2,1] = angs[:,:,1]/NORM
RTs[:,:,2,2] = angs[:,:,0]/NORM
return RTs
# rotate about the z axis
def make_rotZ(angs, eps=1e-6):
B,L = angs.shape[:2]
NORM = torch.linalg.norm(angs, dim=-1) + eps
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1)
RTs[:,:,0,0] = angs[:,:,0]/NORM
RTs[:,:,0,1] = -angs[:,:,1]/NORM
RTs[:,:,1,0] = angs[:,:,1]/NORM
RTs[:,:,1,1] = angs[:,:,0]/NORM
return RTs
# rotate about an arbitrary axis
def make_rot_axis(angs, u, eps=1e-6):
B,L = angs.shape[:2]
NORM = torch.linalg.norm(angs, dim=-1) + eps
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1)
ct = angs[:,:,0]/NORM
st = angs[:,:,1]/NORM
u0 = u[:,:,0]
u1 = u[:,:,1]
u2 = u[:,:,2]
RTs[:,:,0,0] = ct+u0*u0*(1-ct)
RTs[:,:,0,1] = u0*u1*(1-ct)-u2*st
RTs[:,:,0,2] = u0*u2*(1-ct)+u1*st
RTs[:,:,1,0] = u0*u1*(1-ct)+u2*st
RTs[:,:,1,1] = ct+u1*u1*(1-ct)
RTs[:,:,1,2] = u1*u2*(1-ct)-u0*st
RTs[:,:,2,0] = u0*u2*(1-ct)-u1*st
RTs[:,:,2,1] = u1*u2*(1-ct)+u0*st
RTs[:,:,2,2] = ct+u2*u2*(1-ct)
return RTs
class ComputeAllAtomCoords(nn.Module):
def __init__(self):
super(ComputeAllAtomCoords, self).__init__()
self.base_indices = nn.Parameter(base_indices, requires_grad=False)
self.RTs_in_base_frame = nn.Parameter(RTs_by_torsion, requires_grad=False)
self.xyzs_in_base_frame = nn.Parameter(xyzs_in_base_frame, requires_grad=False)
def forward(self, seq, xyz, alphas, non_ideal=False, use_H=True):
B,L = xyz.shape[:2]
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:], non_ideal=non_ideal)
RTF0 = torch.eye(4).repeat(B,L,1,1).to(device=Rs.device)
# bb
RTF0[:,:,:3,:3] = Rs
RTF0[:,:,:3,3] = Ts
# omega
RTF1 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, self.RTs_in_base_frame[seq,0,:], make_rotX(alphas[:,:,0,:]))
# phi
RTF2 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, self.RTs_in_base_frame[seq,1,:], make_rotX(alphas[:,:,1,:]))
# psi
RTF3 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, self.RTs_in_base_frame[seq,2,:], make_rotX(alphas[:,:,2,:]))
# CB bend
basexyzs = self.xyzs_in_base_frame[seq]
NCr = 0.5*(basexyzs[:,:,2,:3]+basexyzs[:,:,0,:3])
CAr = (basexyzs[:,:,1,:3])
CBr = (basexyzs[:,:,4,:3])
CBrotaxis1 = (CBr-CAr).cross(NCr-CAr)
CBrotaxis1 /= torch.linalg.norm(CBrotaxis1, dim=-1, keepdim=True)+1e-8
# CB twist
NCp = basexyzs[:,:,2,:3] - basexyzs[:,:,0,:3]
NCpp = NCp - torch.sum(NCp*NCr, dim=-1, keepdim=True)/ torch.sum(NCr*NCr, dim=-1, keepdim=True) * NCr
CBrotaxis2 = (CBr-CAr).cross(NCpp)
CBrotaxis2 /= torch.linalg.norm(CBrotaxis2, dim=-1, keepdim=True)+1e-8
CBrot1 = make_rot_axis(alphas[:,:,7,:], CBrotaxis1 )
CBrot2 = make_rot_axis(alphas[:,:,8,:], CBrotaxis2 )
RTF8 = torch.einsum(
'brij,brjk,brkl->bril',
RTF0, CBrot1,CBrot2)
# chi1 + CG bend
RTF4 = torch.einsum(
'brij,brjk,brkl,brlm->brim',
RTF8,
self.RTs_in_base_frame[seq,3,:],
make_rotX(alphas[:,:,3,:]),
make_rotZ(alphas[:,:,9,:]))
# chi2
RTF5 = torch.einsum(
'brij,brjk,brkl->bril',
RTF4, self.RTs_in_base_frame[seq,4,:],make_rotX(alphas[:,:,4,:]))
# chi3
RTF6 = torch.einsum(
'brij,brjk,brkl->bril',
RTF5,self.RTs_in_base_frame[seq,5,:],make_rotX(alphas[:,:,5,:]))
# chi4
RTF7 = torch.einsum(
'brij,brjk,brkl->bril',
RTF6,self.RTs_in_base_frame[seq,6,:],make_rotX(alphas[:,:,6,:]))
RTframes = torch.stack((
RTF0,RTF1,RTF2,RTF3,RTF4,RTF5,RTF6,RTF7,RTF8
),dim=2)
xyzs = torch.einsum(
'brtij,brtj->brti',
RTframes.gather(2,self.base_indices[seq][...,None,None].repeat(1,1,1,4,4)), basexyzs
)
if use_H:
return RTframes, xyzs[...,:3]
else:
return RTframes, xyzs[...,:14,:3]