-
Notifications
You must be signed in to change notification settings - Fork 133
/
dataset.py
160 lines (131 loc) · 6.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2020, Sophos Limited. All rights reserved.
#
# 'Sophos' and 'Sophos Anti-Virus' are registered trademarks of
# Sophos Limited and Sophos Group. All other product and company
# names mentioned are trademarks or registered trademarks of their
# respective owners.
from torch.utils import data
import lmdb
import sqlite3
import baker
import msgpack
import zlib
import numpy as np
import os
import tqdm
from logzero import logger
import config
import json
class LMDBReader(object):
def __init__(self, path, postproc_func=None):
self.env = lmdb.open(path, readonly=True, map_size=1e13, max_readers=1024)
self.postproc_func = postproc_func
def __call__(self, key):
with self.env.begin() as txn:
x = txn.get(key.encode('ascii'))
if x is None:return None
x = msgpack.loads(zlib.decompress(x),strict_map_key=False)
if self.postproc_func is not None:
x = self.postproc_func(x)
return x
def features_postproc_func(x):
x = np.asarray(x[0], dtype=np.float32)
lz = x < 0
gz = x > 0
x[lz] = - np.log(1 - x[lz])
x[gz] = np.log(1 + x[gz])
return x
def tags_postproc_func(x):
x = list(x[b'labels'].values())
x = np.asarray(x)
return x
class Dataset(data.Dataset):
tags = ["adware", "flooder", "ransomware", "dropper", "spyware", "packed",
"crypto_miner", "file_infector", "installer", "worm", "downloader"]
def __init__(self, metadb_path, features_lmdb_path,
return_malicious=True, return_counts=True, return_tags=True, return_shas=False,
mode='train', binarize_tag_labels=True, n_samples=None, remove_missing_features=True,
postprocess_function=features_postproc_func):
self.return_counts = return_counts
self.return_tags = return_tags
self.return_malicious = return_malicious
self.return_shas = return_shas
self.features_lmdb_reader = LMDBReader(features_lmdb_path, postproc_func=postprocess_function)
retrieve = ["sha256"]
if return_malicious:
retrieve += ["is_malware"]
if return_counts:
retrieve += ["rl_ls_const_positives"]
if return_tags:
retrieve.extend(Dataset.tags)
conn = sqlite3.connect(metadb_path)
cur = conn.cursor()
query = 'select ' + ','.join(retrieve)
query += " from meta"
if mode == 'train':
query += ' where(rl_fs_t <= {})'.format(config.train_validation_split)
elif mode == 'validation':
query += ' where((rl_fs_t >= {}) and (rl_fs_t < {}))'.format(config.train_validation_split,
config.validation_test_split)
elif mode == 'test':
query += ' where(rl_fs_t >= {})'.format(config.validation_test_split)
else:
raise ValueError('invalid mode: {}'.format(mode))
logger.info('Opening Dataset at {} in {} mode.'.format(metadb_path, mode))
if type(n_samples) != type(None):
query += ' limit {}'.format(n_samples)
vals = cur.execute(query).fetchall()
conn.close()
logger.info(f"{len(vals)} samples loaded.")
# map the items we're retrieving to an index
retrieve_ind = dict(zip(retrieve, list(range(len(retrieve)))))
if remove_missing_features=='scan':
logger.info("Removing samples with missing features...")
indexes_to_remove = []
logger.info("Checking dataset for keys with missing features.")
temp_env = lmdb.open(features_lmdb_path, readonly=True, map_size=1e13, max_readers=256)
with temp_env.begin() as txn:
for index, item in tqdm.tqdm(enumerate(vals), total=len(vals), mininterval=.5, smoothing=0.):
if txn.get(item[retrieve_ind['sha256']].encode('ascii')) is None:
indexes_to_remove.append(index)
indexes_to_remove = set(indexes_to_remove)
vals = [value for index, value in enumerate(vals) if index not in indexes_to_remove]
logger.info(f"{len(indexes_to_remove)} samples had no associated feature and were removed.")
logger.info(f"Dataset now has {len(vals)} samples.")
elif (remove_missing_features is False) or (remove_missing_features is None):
pass
else:
# assume filepath
logger.info(f"Trying to load shas to ignore from {remove_missing_features}...")
with open(remove_missing_features, 'r') as f:
shas_to_remove = json.load(f)
shas_to_remove = set(shas_to_remove)
vals = [value for value in vals if value[retrieve_ind['sha256']] not in shas_to_remove]
logger.info(f"Dataset now has {len(vals)} samples.")
self.keylist = list(map(lambda x: x[retrieve_ind['sha256']], vals))
if self.return_malicious:
self.labels = list(map(lambda x: x[retrieve_ind['is_malware']], vals))
if self.return_counts:
self.count_labels = list(map(lambda x: x[retrieve_ind['rl_ls_const_positives']], vals))
if self.return_tags:
self.tag_labels = np.asarray([list(map(lambda x: x[retrieve_ind[t]], vals)) for t in Dataset.tags]).T
if binarize_tag_labels:
self.tag_labels = (self.tag_labels != 0).astype(int)
def __len__(self):
return len(self.keylist)
def __getitem__(self, index):
labels = {}
key = self.keylist[index]
features = self.features_lmdb_reader(key)
if self.return_malicious:
labels['malware'] = self.labels[index]
if self.return_counts:
labels['count'] = self.count_labels[index]
if self.return_tags:
labels['tags'] = self.tag_labels[index]
if self.return_shas:
return key, features, labels
else:
return features, labels
if __name__ == '__main__':
baker.run()