-
Notifications
You must be signed in to change notification settings - Fork 78
/
inference_video.py
300 lines (272 loc) · 9.88 KB
/
inference_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
import cv2
import torch
import glob as glob
import os
import time
import argparse
import yaml
import matplotlib.pyplot as plt
import pandas
from models.create_fasterrcnn_model import create_model
from utils.general import set_infer_dir
from utils.annotations import (
inference_annotations,
annotate_fps,
convert_detections,
convert_pre_track,
convert_post_track
)
from utils.transforms import infer_transforms, resize
from torchvision import transforms as transforms
from deep_sort_realtime.deepsort_tracker import DeepSort
from utils.logging import LogJSON
def read_return_video_data(video_path):
cap = cv2.VideoCapture(video_path)
# Get the video's frame width and height
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
assert (frame_width != 0 and frame_height !=0), 'Please check video path...'
return cap, frame_width, frame_height
def parse_opt():
# Construct the argument parser.
parser = argparse.ArgumentParser()
parser.add_argument(
'-i', '--input',
help='path to input video',
)
parser.add_argument(
'-o', '--output',
default=None,
help='folder path to output data',
)
parser.add_argument(
'--data',
default=None,
help='(optional) path to the data config file'
)
parser.add_argument(
'-m', '--model',
default=None,
help='name of the model'
)
parser.add_argument(
'-w', '--weights',
default=None,
help='path to trained checkpoint weights if providing custom YAML file'
)
parser.add_argument(
'-th', '--threshold',
default=0.3,
type=float,
help='detection threshold'
)
parser.add_argument(
'-si', '--show',
action='store_true',
help='visualize output only if this argument is passed'
)
parser.add_argument(
'-mpl', '--mpl-show',
dest='mpl_show',
action='store_true',
help='visualize using matplotlib, helpful in notebooks'
)
parser.add_argument(
'-d', '--device',
default=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'),
help='computation/training device, default is GPU if GPU present'
)
parser.add_argument(
'-ims', '--imgsz',
default=None,
type=int,
help='resize image to, by default use the original frame/image size'
)
parser.add_argument(
'-nlb', '--no-labels',
dest='no_labels',
action='store_true',
help='do not show labels during on top of bounding boxes'
)
parser.add_argument(
'--square-img',
dest='square_img',
action='store_true',
help='whether to use square image resize, else use aspect ratio resize'
)
parser.add_argument(
'--classes',
nargs='+',
type=int,
default=None,
help='filter classes by visualization, --classes 1 2 3'
)
parser.add_argument(
'--track',
action='store_true'
)
parser.add_argument(
'--log-json',
dest='log_json',
action='store_true',
help='store a json log file in COCO format in the output directory'
)
args = vars(parser.parse_args())
return args
def main(args):
# For same annotation colors each time.
np.random.seed(42)
if args['track']: # Initialize Deep SORT tracker if tracker is selected.
tracker = DeepSort(max_age=30)
# Load the data configurations.
data_configs = None
if args['data'] is not None:
with open(args['data']) as file:
data_configs = yaml.safe_load(file)
NUM_CLASSES = data_configs['NC']
CLASSES = data_configs['CLASSES']
DEVICE = args['device']
if args['output'] is not None:
OUT_DIR = args['output']
if not os.path.exists(OUT_DIR):
os.makedirs(OUT_DIR)
else:
OUT_DIR=set_infer_dir()
VIDEO_PATH = None
# Load the pretrained model
if args['weights'] is None:
# If the config file is still None,
# then load the default one for COCO.
if data_configs is None:
with open(os.path.join('data_configs', 'test_video_config.yaml')) as file:
data_configs = yaml.safe_load(file)
NUM_CLASSES = data_configs['NC']
CLASSES = data_configs['CLASSES']
try:
build_model = create_model[args['model']]
model, coco_model = build_model(num_classes=NUM_CLASSES, coco_model=True)
except:
build_model = create_model['fasterrcnn_resnet50_fpn_v2']
model, coco_model = build_model(num_classes=NUM_CLASSES, coco_model=True)
# Load weights if path provided.
if args['weights'] is not None:
checkpoint = torch.load(args['weights'], map_location=DEVICE)
# If config file is not given, load from model dictionary.
if data_configs is None:
data_configs = True
NUM_CLASSES = checkpoint['data']['NC']
CLASSES = checkpoint['data']['CLASSES']
try:
print('Building from model name arguments...')
build_model = create_model[str(args['model'])]
except:
build_model = create_model[checkpoint['model_name']]
model = build_model(num_classes=NUM_CLASSES, coco_model=False)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE).eval()
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
if args['input'] == None:
VIDEO_PATH = data_configs['video_path']
else:
VIDEO_PATH = args['input']
assert VIDEO_PATH is not None, 'Please provide path to an input video...'
# Define the detection threshold any detection having
# score below this will be discarded.
detection_threshold = args['threshold']
cap, frame_width, frame_height = read_return_video_data(VIDEO_PATH)
save_name = VIDEO_PATH.split(os.path.sep)[-1].split('.')[0]
# Define codec and create VideoWriter object.
out = cv2.VideoWriter(f"{OUT_DIR}/{save_name}.mp4",
cv2.VideoWriter_fourcc(*'mp4v'), 30,
(frame_width, frame_height))
if args['imgsz'] != None:
RESIZE_TO = args['imgsz']
else:
RESIZE_TO = frame_width
if args['log_json']:
log_json = LogJSON(os.path.join(OUT_DIR, 'log.json'))
frame_count = 0 # To count total frames.
total_fps = 0 # To get the final frames per second.
# read until end of video
while(cap.isOpened()):
# capture each frame of the video
ret, frame = cap.read()
if ret:
orig_frame = frame.copy()
frame = resize(frame, RESIZE_TO, square=args['square_img'])
image = frame.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = infer_transforms(image)
# Add batch dimension.
image = torch.unsqueeze(image, 0)
# Get the start time.
start_time = time.time()
with torch.no_grad():
# Get predictions for the current frame.
outputs = model(image.to(DEVICE))
forward_end_time = time.time()
forward_pass_time = forward_end_time - start_time
# Get the current fps.
fps = 1 / (forward_pass_time)
# Add `fps` to `total_fps`.
total_fps += fps
# Increment frame count.
frame_count += 1
# Load all detection to CPU for further operations.
outputs = [{k: v.to('cpu') for k, v in t.items()} for t in outputs]
# Carry further only if there are detected boxes.
if len(outputs[0]['boxes']) != 0:
draw_boxes, pred_classes, scores, labels = convert_detections(
outputs, detection_threshold, CLASSES, args
)
if args['track']:
tracker_inputs = convert_pre_track(
draw_boxes, pred_classes, scores
)
# Update tracker with detections.
tracks = tracker.update_tracks(tracker_inputs, frame=frame)
draw_boxes, pred_classes, scores = convert_post_track(tracks)
frame = inference_annotations(
draw_boxes,
pred_classes,
scores,
CLASSES,
COLORS,
orig_frame,
frame,
args
)
else:
frame = orig_frame
if args['log_json']:
log_json.update(frame, save_name, draw_boxes, labels, CLASSES)
frame = annotate_fps(frame, fps)
final_end_time = time.time()
forward_and_annot_time = final_end_time - start_time
print_string = f"Frame: {frame_count}, Forward pass FPS: {fps:.3f}, "
print_string += f"Forward pass time: {forward_pass_time:.3f} seconds, "
print_string += f"Forward pass + annotation time: {forward_and_annot_time:.3f} seconds"
print(print_string)
out.write(frame)
if args['show']:
cv2.imshow('Prediction', frame)
# Press `q` to exit
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
# Release VideoCapture().
cap.release()
# Close all frames and video windows.
cv2.destroyAllWindows()
# Save JSON log file.
if args['log_json']:
log_json.save(os.path.join(OUT_DIR, 'log.json'))
# Calculate and print the average FPS.
avg_fps = total_fps / frame_count
print(f"Average FPS: {avg_fps:.3f}")
print('Path to output files: '+OUT_DIR)
if __name__ == '__main__':
args = parse_opt()
main(args)