-
Notifications
You must be signed in to change notification settings - Fork 1
/
spm_adjmean_ui.m
653 lines (596 loc) · 24.3 KB
/
spm_adjmean_ui.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
function spm_adjmean_ui
% Scaled (for grand mean) & adjusted (for global) means via General Linear Model
% FORMAT spm_adjmean_ui
%_______________________________________________________________________
%
% spm_adjmean_ui uses the General Linear Model to produce mean images
% adjusted for global effects.
%
% This program is designed for collapsing data within condition to give
% a single adjusted mean scan per condition per subject, suitable for a
% (2nd level) random effects analysis.
%
% See spm_RandFX.man for further details on implementing random effects
% analyses in SPM96 using a multi-level approach.
%
% Overview
% ----------------------------------------------------------------------
% The program supports multiple conditions, multiple subjects, Grand
% Mean (GM) scaling by subject or overall grand mean, proportional
% scaling global normalisation; and AnCova (regression) global
% normalisation, both overall and subject specific, with adjustment to
% subject or overall grand means (after scaling). The availability of
% these options is customised for various designs.
%
% Adjustment is performed via the General Linear Model. The interface
% is similar to SPM-PET, and the adjusted means are the parameter
% estimates from the model. Having chosen a design, the user is
% prompted for scans (by subject and/or condition where appropriate),
% and then asked to set scaling/normalisation/adjustment options as
% appropriate. With the design specified, the model is constructed, and
% the user prompted to enter/confirm filenames for the adjusted mean
% images, which are written to the current working directory (pwd).
%
% The model, filenames, global values and options are saved to a MatLab
% *.mat file named SPMadj.mat in the current working directory.
%
% Implicit masking is carried out: Zero voxels are implicitly assummed
% to be masked out. Thus, the adjusted mean is calculated at voxels
% which are non-zero in *all* the input images pertaining to the
% adjusted mean (usually those from the appropriate subject). (This is
% *not* a softmean.) Data realigned in a single session with SPM'96 (or
% later) are automatically implicitly zero masked with a consistent
% mask in this way.
%
% GM, the value for grand mean scaling, is user specified.
% The default value is 50.
%
% If computing adjusted means for subsequent (2nd level) modelling, as
% with a random effects analysis, then it is important to use a
% seperable model, such that the adjustment for one subject is
% independent of other subjects entered into the model. Thus,
% proportional scaling or subject-specific AnCova adjustment must be
% used. Further, multiple runs *must* use the same GM value, and should
% scale Grand mean *by subject*.
%
% ( A separate program (spm_adjmean_fmri_ui) is available for computing )
% ( adjusted condition means of fMRI data, adjusting for global effects )
% ( and removing low frequency drifts with a high-pass filer (discrete )
% ( cosine basis set). The functionality is similar to this code, but )
% ( the two routines have been separated for algorithmic clarity. )
%
% Diagnostic output
% ----------------------------------------------------------------------
% Diagnostic output consists of two sections:
%
% The first is a list of the image filenames; their global values; and
% the respective subject (block), condition and replication indices; in
% the order in which the the data are entered into the model. This is
% followed by a brief description of appropriate parameters (Grand mean
% scaling etc.)
%
% The second part is a single page depicting the design matrix, effect
% names, parameter contrasts used, and the corresponding image files
% written.
%
% As always, look at the resulting mean images to make sure they look OK!
%
%
% AdjMean "recipies"...
% ----------------------------------------------------------------------
% Rather than offer a bewildering array of options, various
% pre-configured recipies are offered for common scenarios:
%
% * Basic means: +/- grand mean scaling; +/- global normalisation
%
% 1) Straight mean
% - as the neame suggests! Prompts for files and writes their mean.
% 2) PropSca & Average
% - Average of images adjusted for global differences by proportional
% scaling: Scales all images to have global mean of GM, and then
% writes their mean.
% 3) Linear (AnCova) adjusted mean (scaled mean)
% - Data scaled so that grand mean is GM. Single mean of images
% adjusted for global effects by linear regression to mean global.
% (Actually, this turns out to be a straight mean of the grand mean
% scaled data, hence the description "scaled mean".)
% 4) Multi linear adjusted means (scaled means)
% - Multiple block means. Data scaled within blocks to (block) Grand
% Means of GM. Linear global adjustment within block to block grand
% mean, and computation of adjusted block means. It's like running
% option (3) multiple times. Since this is equivalent to grand mean
% scaling within block and then writing out the block means, it's
% also tagged "scaled means".
%
% * The "condition" recipies: Adjusted condition means, computed within subj.
%
% 5) SingleSubj: Condition means (PropSca)
% - Proportional scaling global normalisation of image global means
% to GM. Computation of means of adjusted data within condition.
% 6) SingleSubj: Condition means (AnCova)
% - Grand mean scaling of mean global to GM. AnCova global
% normalisation (parallel lines for each condition).
% Condition means of AnCova adjusted data written. These are the
% condition effects of the standard SPM single subject activation
% AnCova.
% 7) MultiSubj: Condition means (PropSca)
% - Multiple subject version of option (5).
% It's like running option (5) repeatedly.
% 8) MultiSubj: Condition means (AnCova by subject)
% - Multiple subject version of option (6):
% Grand mean scaling by subject, AnCova by subject.
% It's like running option (6) repeatedly.
%
%
% Algorithm
% ----------------------------------------------------------------------
% The model at each voxel is Y = X*B + e, with least squares estimates
% (for full rank X) for the vector B of parameters as b =
% inv(X'*X)*X'*Y. For c a vector of contrast weights extracting the
% appropriate parameter, the contrast of the parameter estimates is
% c'*b = c'* inv(X'*X)*X' * Y, a weighted sum (or weighted mean) of the
% data at that voxel. These weights are identical for all voxels, so
% the image of the parameter estimate can be computed as a weighted
% mean of the images.
%
% Once the weights have been worked out for each adjusted mean image,
% computation proceeds by passing appropriate weights and image
% filenames to spm_add, which writes out the appropriate parameter
% image as an Analyze format image of the same type (see spm_type) as
% the input images.
%
% Variables saved in SPMadj.mat data file
% ----------------------------------------------------------------------
% DesDef Structure containing defaults for chosen design
% Des Structure containing design parameters & specification
% .DesName Design name
% .HForm Form of DesMtx H partition
% .iSubj Subject indicator vector
% .iCond Condition indicator vector
% .iRepl Replication indicator vector
% .iGloNorm Global normalisation option
% .sGloNorm Global normalisation description
% .iGMsca Grand mean scaling option
% .sGMsca Grand mean scaling description
% .GM Grand Mean used for scaling
% .iAdjTo Adjustment (for AnCova) option
% .sAdjTo Adjustment (for AnCova) description
% .aGM AnCova adjustment value (subtracted from GX before AnCova)
% .gSF Image scale factors for global scaling
% .X Design matrix
% .nX Normalised (for imaging) design matrix
% .Xnames Effects corresponding to cols of X (cellstr)
% .aPMap Additional parameter to effect name mappings (see spm_desMtx)
% .EXnames English effect names corresponding to TeX parameters of Xnames
% .iX Structure defining design matrix subpartitions
% .H Columns of X corresponding to H partition
% .C Columns of X corresponding to C partition
% .B Columns of X corresponding to B partition
% .G Columns of X corresponding to G partition
% c Matrix of contrasts, contrasts in rows
% cNames Names associated with contrasts
% W Weights for images corresponding to contrasts
% Fnames Filenames of adjusted mean images written (cellstr)
% rGX raw global means (before any scaling)
% GX Global means after scaling
%
%_______________________________________________________________________
% @(#)spm_adjmean_ui.m 2.5 Andrew Holmes 99/03/31
%=======================================================================
% - S E T U P
%=======================================================================
SCCSid = '2.5';
SPMid = spm('FnBanner',mfilename,SCCSid);
[Finter,Fgraph,CmdLine] = spm('FnUIsetup','AdjMean',1);
spm_help('!ContextHelp',[mfilename,'.m'])
%=======================================================================
% - D E S I G N P A R A M E T E R S
%=======================================================================
%-Design default definitions
%-----------------------------------------------------------------------
DesDefF = {...
'DesName'; %-Design name
'HForm';... %-Form of H partition
'aPMap';... %-Parameter mappings
'bMSubj';... %-#subject/block 0=ask
'bMCond';... %-#conditions 0=ask
'iGloNorm';... %-GloNorm codes
'iGMsca';... %-GMsca codes
'GM';... %-Grand Mean value
'iAdjTo'}; %-AdjTo codes
DesDef = {...
'Straight mean',...
'iSubj,''-'',''\mu''', {'\mu','mean';'\gamma','blok'},...
1, 0, 1, 1, [], 4;...
'PropSca & average',...
'iSubj,''-'',''\mu''', {'\mu','adjmean';'\gamma','blok'},...
1, 0, 2, 4, [], 4;...
'Linear (AnCova) adjusted mean (scaled mean)',...
'iSubj,''-'',''\mu''', {'\mu','scamean'},...
0, 0, 3, 2, [], 2;...
'Multi linear adjusted means (scaled means)',...
'iSubj,''-'',''\mu''', {'\mu','adjmean';'\gamma','blok'},...
1, 0, 4, 3, [], 3;...
'SingleSubj: Condition means (PropSca)',...
'iCond,''-'',''\alpha''', '',...
0, 1, 2, 4, [], 4;...
'SingleSubj: Condition means (AnCova)', ...
'iCond,''-'',''\alpha''', '',...
0, 1, 3, 2, [], 2;...
'MultiSubj: Condition means (PropSca)',...
'[iSubj,iCond],''-'',{''\gamma'',''\alpha''}', '',...
1, 1, 2, 4, [], 4;...
'MultiSubj: Condition means (AnCova by subject)',...
'[iSubj,iCond],''-'',{''\gamma'',''\alpha''}', '',...
1, 1, 4, 3, [], 3 };
iDefDesDef = 2; %-Default Design definition
%-Options
%-----------------------------------------------------------------------
%-Global normalization options
sGloNorm = { 'No Global Normalisation',... %-1
'Proportional scaling',... %-2
'AnCova',... %-3
'AnCova {subject-specific}'}; %-4
%-Grand mean scaling options
sGMsca = { 'No Grand Mean Scaling',... %-1
'Scaling of overall Grand Mean',... %-2
'Scaling of subject Grand Means',... %-3
'(Implicit in PropSca global normalisation)'}; %-4
%-NB: Grand mean scaling by subject is redundent for proportional scaling
dGM = 50; %-Default Grand Mean value
%-Adjustment options for AnCova designs (for centering of globals)
%-If Grand mean scaling, then would usually AnCova adjust in a similar
% fashion, i.e. to GM.
sAdjTo = { 'Specify...',... %-1
'Grand mean (mean of all globals)',... %-2
'Subject grand mean (mean of subjects globals)',... %-3
'(redundant: not doing AnCova)'}; %-4
%=======================================================================
% - G E T I M A G E S & P A R A M E T E R S
%=======================================================================
%-Initialise indicies
%-----------------------------------------------------------------------
iSubj = []; % Subject (block) index
iCond = []; % condition (or scan) (per subject) index
P = {}; % cell array of string filenames
%-Select design & unpack design specification defaults
%-----------------------------------------------------------------------
DesDef = cell2struct(DesDef(...
spm_input('Select mean type...',1,'m',DesDef(:,1),[],iDefDesDef)...
,:)',DesDefF);
DesName = DesDef.DesName;
HForm = DesDef.HForm;
aPMap = DesDef.aPMap;
bMSubj = DesDef.bMSubj;
sSubj = spm_DesMtx('ETeXNames','\gamma',aPMap);
bMCond = DesDef.bMCond;
iGloNorm = DesDef.iGloNorm;
iGMsca = DesDef.iGMsca;
GM = DesDef.GM;
iAdjTo = DesDef.iAdjTo;
%-Get filenames, build subject & condition indicies
%-----------------------------------------------------------------------
if bMSubj
nSubj = spm_input(['number of ',sSubj,'s ?'],'+1','n1');
bMSubj = nSubj > 1;
else
nSubj = 1;
end
guiPos = spm_input('!NextPos');
tmp = [];
for subj = 1:nSubj
if bMSubj, strS = [sSubj,' ',int2str(subj),': ']; else, strS = ''; end
tP = spm_get(Inf,'.img',{[strS,'select scans...']});
nt = size(tP,1);
P = [P;tP];
iSubj = [iSubj; subj*ones(nt,1)];
if bMCond
str = sprintf('%s[%d] iCond index',strS,nt);
tmp = spm_input(str,guiPos,'c',tmp',nt);
iCond = [iCond; tmp];
else
iCond = [iCond; ones(nt,1)];
end
end
%-Total #observations
%-----------------------------------------------------------------------
nScan = length(iSubj);
if nScan==1, error('Only one image - gimme more!'), end
%-Construct H partition
%-----------------------------------------------------------------------
eval(['[H,Hnames] = spm_DesMtx(',HForm,');'])
%-Global normalization options
%-----------------------------------------------------------------------
if length(iGloNorm)>1 %-User has a choice from the options in iGloNorm
%-Don't offer subject specific AnCova if not bMSubj
if ~bMSubj, iGloNorm(find(iGloNorm==4))=[]; end
iGloNorm = spm_input('Select global normalisation','+1','m',...
sGloNorm(iGloNorm),iGloNorm);
end
sGloNorm = sGloNorm{iGloNorm};
%-Grand mean scaling options
%-----------------------------------------------------------------------
%-Grand mean scaling is implicit in PropSca global normalisation
if iGloNorm==2, iGMsca=4; end
if length(iGMsca)>1 %-User has a choice from the options in iGMsca
%-Don't offer subject specifics if not bMSubj
if ~bMSubj, iGMsca(find(iGMsca==3))=[]; end
iGMsca = spm_input('Grand mean scaling','+1','m',sGMsca(iGMsca),iGMsca);
end
if iGMsca>1 & isempty(GM) %-Get value for grand mean scaling
if iGloNorm==2, str='GM: PropSca global mean to ?';
else, str='GM: Scale grand mean to ?'; end
GM = spm_input(str,'+1','e',dGM);
if GM==0, iGMsca=0; end
elseif iGMsca==1 %-Set GM to zero if not GMscaling
GM=0;
elseif GM==0; %-Watch out for GM==0! (=>DesDef is set wrong)
iGMsca=1;
end
sGMsca = sGMsca{iGMsca};
%-Adjustment options for AnCova designs (for centering of globals)
%-----------------------------------------------------------------------
if any(iGloNorm==[1,2]), iAdjTo=4; end
if length(iAdjTo)>1 %-User has a choice from the options in iAdjTo.
%-Don't offer subject specifics if not bMSubj
if ~bMSubj, iAdjTo(find(iAdjTo==2))=[]; end
iAdjTo=spm_input...
('AnCova adjust (centre globals), after any scaling to',...
'+1','m',sAdjTo(iAdjTo,:),iAdjTo);
end
if iAdjTo==1, aGM = spm_input('AnCova adjust to ?','+1','e',GM); end
sAdjTo = sAdjTo{iAdjTo};
%=======================================================================
% - C O N F I G U R E D E S I G N
%=======================================================================
spm('FigName','AdjMean: configuring',Finter,CmdLine); fprintf('\tconfiguring: ')
spm('Pointer','Watch');
%-Memory map files
%-----------------------------------------------------------------------
V = spm_vol(char(P));
%-Check for consistency of image dimensions and orientation / voxel size
%-----------------------------------------------------------------------
if any(any(diff(cat(1,V.dim),1,1),1)&[1,1,1,0]) %NB: Bombs for single image
error('images do not all have the same dimensions'), end
if any(any(any(diff(cat(3,V.mat),1,3),3)))
error('images do not all have same orientation & voxel size'), end
%-Work out required Analyze header info from handles
%-----------------------------------------------------------------------
DIM = V(1).dim(1:3);
VOX = sqrt(sum(V(1).mat(1:3,1:3).^2));
ORIGIN = (V(1).mat\[0 0 0 1]')';
ORIGIN = round(ORIGIN(1:3));
%-Compute global values
%-----------------------------------------------------------------------
fprintf('(globals)')
GX = zeros(nScan,1);
for i = 1:nScan, GX(i) = spm_global(V(i)); end
fprintf('\b - done)\n')
%-Scaling: compute global scaling factors required to implement proportional
% scaling global normalisation or Grand mean scaling, as requested
%-----------------------------------------------------------------------
rGX = GX;
if iGloNorm==2
%-Proportional scaling global normalisation
gSF = GM./GX;
GX = GM*ones(nScan,1);
%** scale rGX for printout? ...or just graph them?
elseif iGMsca==2
%-Grand mean scaling (overall)
gSF = GM/mean(GX);
GX = GX*gSF;
sGMsca = sprintf('%s to %g',sGMsca,GM);
elseif iGMsca==3
%-Grand mean scaling by subject
gSF = GM./spm_meanby(GX,iSubj);
GX = GX.*gSF;
sGMsca = sprintf('%s to %g',sGMsca,GM);
else %-No scaling
gSF = ones(nScan,1);
end
%-AnCova options: Construct Global covariates of no interest partition
%-----------------------------------------------------------------------
if any(iGloNorm==[3,4])
if iAdjTo==1
%-aGM set by user
elseif iAdjTo==2
aGM = mean(GX);
elseif iAdjTo==3
aGM = spm_meanby(GX,iSubj);
else, error('Illegal iAdjTo')
end
if iGloNorm == 3 %-AnCova
G = GX - aGM; Gnames = '\zeta';
elseif iGloNorm == 4 %-AnCova by block/subject
[G,Gnames] = ...
spm_DesMtx([iSubj,GX-aGM],'FxC',{'\gamma','\zeta'});
end
else
G = []; Gnames = ''; aGM=[];
end
%-Design matrix, parameter estimation matrix
%-----------------------------------------------------------------------
X = [H G];
[nX,Xnames] = spm_DesMtx('sca',H,Hnames,G,Gnames);
EXnames = spm_DesMtx('ETeXNames',Xnames,aPMap);
iX = struct( 'H', [1:size(H,2)], 'C', [],...
'B', [], 'G', size(H,2) + [1:size(G,2)]);
XTXinvX = inv(X'*X)*X';
%-Contrasts (c) & associated weight matrix (W)
%-----------------------------------------------------------------------
c = [eye(size(H,2)), zeros(size(H,2),size(G,2))];
nc = size(c,1);
W = c * XTXinvX;
cNames = spm_DesMtx('Fnames',EXnames(iX.H));
Fnames = cNames;
%=======================================================================
% - D I A G N O S T I C O U T P U T
%=======================================================================
figure(Fgraph);
%-Display files and variables
%=======================================================================
[P,CPath] = spm_str_manip(P,'c');
%-Display
%-----------------------------------------------------------------------
axes('Position',[0 0 1 .95],'Visible','off')
text(.40,1,'Adjusted means','Fontsize',16,'Fontweight','Bold')
text(.05,.85,'Scan Index','Rotation',90)
if bMSubj, text(.10,.85, sSubj, 'Rotation',90), end
if bMCond, text(.15,.85,'condition', 'Rotation',90), end
x0 = .20; y0 = .83;
dx = .08; dy = .018;
x = x0;
text(x + .02,.85,'global','Rotation',90), x = x + 1.5*dx;
text(x,.92,'Base directory:','FontSize',10,'Fontweight','Bold')
text(x,.90,CPath,'FontSize',10)
text(x,.87,'Filename Tails')
y = y0;
for i = 1:nScan
text(.03,y,sprintf('%02d :',i));
if bMSubj, text(.08,y,sprintf('%2d',iSubj(i))), end
if bMCond, text(.13,y,sprintf('%2d',iCond(i))), end
x = x0;
text(x,y,sprintf('%-8.6g',GX(i)),'FontSize',10), x = x + 1.5*dx;
text(x,y,P{i},'FontSize',10)
y = y - dy;
if y < 0;
spm_print
spm_clf(Fgraph); axis off
y = y0;
text(.16,1.02,['Adjusted means (continued)'],...
'Fontsize',16,'Fontweight','Bold')
end
end
y = y - dy;
dy = dy*1.2;
text(.08,y,['Grand mean scaling: ',sGMsca]), y = y - dy;
text(.08,y,['Global normalisation: ',sGloNorm]), y = y - dy;
text(.08,y,['AnCova adjustment to: ',sAdjTo]), y = y - dy;
text(.08,y,sprintf('Parameters saved to: %s/SPMadj.mat',pwd),'FontSize',8)
spm_print
%-Depict and label design matrix, depict & label contrasts
%=======================================================================
spm_clf(Fgraph); axes('Position',[0 0 1 .95],'Visible','off')
text(.2,1,'Design Matrix, contrasts & contrast files',...
'Fontsize',16,'Fontweight','Bold');
%-Image scaled design matrix, label the effects, add filenames (if <=32)
%-----------------------------------------------------------------------
hDesMtx = axes('Position',[.07 .5 .6 .3]);
image((nX + 1)*32);
set(hDesMtx,'TickDir','out')
ylabel('scans')
xlabel('parameters')
axes('Position',[.07 .8 .6 .1],'Visible','off')
dx = 1/size(nX,2);
tXnames = spm_DesMtx('TeXnames',Xnames);
for i = 1:size(nX,2)
text((i - .5)*dx ,.1,tXnames{i},'Fontsize',10,'Interpreter','TeX')
text((i - .5)*dx+.01,.3,EXnames{i},'Fontsize',9,'Rotation',90)
end
if nScan<=32
set(hDesMtx,'YTick',1:nScan)
axes('Position',[.68 .5 .3 .3],'Visible','off')
dy = 1/nScan;
tP = spm_str_manip(P,'k40');
for i=1:nScan
text(0,(nScan-i+0.5)*dy,tP{i},'FontSize',8)
end
end
%-Depict contrasts and associated (preliminary) filenames
%-----------------------------------------------------------------------
dy = .4/nc;
axes('Position',[.025 .05 .05 .4],'Visible','off')
text(0,.5,'contrasts','HorizontalAlignment','Center','Rotation',90,...
'FontSize',14,'FontWeight','Bold')
axes('Position',[.6 .44 .40 .02],'Visible','off')
text(0,1,'Contrast files...','FontSize',10,'FontWeight','Bold')
text(0,0,sprintf('...in %s',pwd),'FontSize',8)
hFnames = zeros(1,nc);
for i = 1:nc
axes('Position',[.1 (.45 -dy*i) .6 .9*dy])
h = bar(c(i,:),1);
set(h,'FaceColor',[1 1 1]*.8)
set(gca,'XLim',[.5,size(c,2)+.5],'Visible','off')
text(0,0,num2str(i),'HorizontalAlignment','Right','FontSize',10)
hFnames(i) = text(size(c,2)+.55,.1,Fnames{i},'FontSize',10,...
'Color',[1 1 1]*.5,'FontAngle','Italic');
end
%=======================================================================
% - W R I T E C O N T R A S T I M A G E S
%=======================================================================
fprintf('\tspecify filenames for contrast images...\n')
spm('Pointer');
guiPos = spm_input('!NextPos');
for i = 1:nc
Fnames{i} = spm_input(sprintf('Contrast %d: filename?',i),...
guiPos,'s',Fnames{i});
set(hFnames(i),'string',Fnames{i},'Color','k','FontAngle','Normal')
end
spm_print
%-Parameter images (of interest) - Adjusted mean images
%-----------------------------------------------------------------------
spm('FigName','AdjMean - writing',Finter,CmdLine);
spm('Pointer','Watch');
%-Computation - calculations handled by spm_add.c
%-Using implicit zero masking feature of spm_add: The resultant image
% will be zero at voxels where *any* of the input images are zero.
%-Create handle template for output images as 16bit Int16's
Vo = struct( 'fname', '',...
'dim', [V(1).dim(1:3),4],...
'mat', V(1).mat,...
'pinfo' , [1,0,0]',...
'descrip', '');
%-Loop over contrasts
for i = 1:nc
fprintf('\t...writing image %d/%d: %-20s',i,nc,Fnames{i})
%-Implement weighted sum by weighting scalefactors in image handles
w = W(i,:).*gSF';
Q = find(abs(w)>0);
w = w(Q); wV = V(Q);
for j=1:length(Q), wV(j).pinfo(1,:)=wV(j).pinfo(1,:)*w(j); end
%-Write header
Vo.fname = [Fnames{i},'.img'];
Vo.descrip = sprintf('Adjusted mean (spm_adjmean) - %s',Fnames{i});
Vo.pinfo = [1,0,0]';
spm_create_image(Vo);
%-Compute & rewrite header scalefactor
Vo.pinfo(1) = spm_add(wV,Vo,'m');
spm_create_image(Vo);
fprintf(' (done)\n')
end
%-Prepend PWD to Fnames
Fnames = cellstr([repmat([pwd,filesep],nc,1),char(Fnames)]);
%-Save parameters to SPMadj.mat in current directory
%-----------------------------------------------------------------------
%-Pack design parameters up in a structure
Des = struct(...
'DesName', DesName,...
'HForm', HForm,...
'iSubj', iSubj,...
'iCond', iCond,...
'iGloNorm', iGloNorm,...
'sGloNorm', sGloNorm,...
'iGMsca', iGMsca,...
'sGMsca', sGMsca,...
'GM', GM,...
'gSF', gSF,...
'iAdjTo', iAdjTo,...
'sAdjTo', sAdjTo,...
'aGM', aGM,...
'X', X,...
'nX', nX,...
'Xnames', Xnames,...
'aPMap', aPMap,...
'EXnames', EXnames,...
'iX', iX );
save SPMadj SPMid ...
DesDef Des V ...
c cNames W ...
Fnames ...
rGX GX
%=======================================================================
% - E N D
%=======================================================================
spm('FigName','AdjMean - done',Finter,CmdLine);
spm('Pointer','Arrow')
fprintf('\n\n')