
Spring AI / Spring AI API / Chat Completion API / OpenAI Chat / Function Calling

Function Calling

Function Calling

Quick Start

Registering Functions as Beans

Register/Call Functions with Prompt Options

Function Calling Flow

Appendices:

OpenAI API Function Calling Flow

You can register custom Java functions with the OpenAiChatClient and have the OpenAI model intelligently choose to output a JSON object containing arguments to call one or many
of the registered functions. This is a powerful technique to connect the LLM capabilities with external tools and APIs. The models have been trained to detect when a function should to
be called and to respond with JSON that adheres to the function signature.

Note that the OpenAI API does not call the function directly; instead, the model generates JSON that you can use to call the function in your code and return the result back to the model
to complete the conversation.

To register your custom function you need to specify a function name , function description that helps the model to understand when to call the function, and the function call
signature (as JSON schema) to let the model know what arguments the function expects. Then you can implement a function that takes the function call arguments from the model

interacts with the external, 3rd party, services and returns the result back to the model.

Spring AI offers a generic ToolFunctionCallback.java interface and the companion AbstractToolFunctionCallback.java utility class to simplify the implementation and registration of Java
callback functions.

Quick Start

Lets create a chatbot that answer questions by calling external tools. For example lets register a custom function that takes a location and returns the current weather in that location.
Question such as "What’s the weather like in Boston?" should trigger the model to call the function providing the location as an argument. The function uses some weather service API
and returns the weather response back to the model to complete the conversation.

Let the MockWeatherService.java represent the 3-rd party weather service API:

Then extend AbstractToolFunctionCallback to implement our weather function like this:

The constructor takes a function name (1), description (2), input type signature (3) and a converter (4) to convert the Response into a text. The Spring AI auto-generates the JSON
Scheme for the MockWeatherService.Request.class signature.

Registering Functions as Beans

If you enable the OpenAiChatClient Auto-Configuration, the easiest way to register a function is to created it as a bean in the Spring context:

public class MockWeatherService implements Function<Request, Response> {

public enum Unit { C, F }
public record Request(String location, Unit unit) {}
public record Response(double temp, Unit unit) {}

public Response apply(Request request) {
return new Response("30", Unit.C);

}
}

JAVA

public class WeatherFunctionCallback
extends AbstractToolFunctionCallback<Request, Response> {

private final MockWeatherService weatherService = new MockWeatherService();

public WeatherFunctionCallback(String name, String description, Class<Request> inputType) {
super(name, // (1)

description, // (2)
inputType, // (3)
(response) -> "" + response.temp() + response.unit()); // (4)

}

@Override
public Response apply(Request request) {

return this.weatherService.apply(request);
}

};

JAVA

@Configuration
static class Config {

@Bean
public WeatherFunctionCallback weatherFunctionInfo() {

return new WeatherFunctionCallback(
"CurrentWeather", // (1) name
"Get the weather in location", // (2) description
MockWeatherService.Request.class); // (3) signature

}
...

}

JAVA

Now you can enable the CurrentWeather function in your prompt calls:

Above user question will trigger 3 calls to CurrentWeather function (one for each city) and the final response will be something like this:

Here is the current weather for the requested cities:
- San Francisco, CA: 30.0°C
- Tokyo, Japan: 10.0°C
- Paris, France: 15.0°C

The [ToolCallWithPromptFunctionRegistrationIT.java] integration test provides a complete example of how to register a function with the OpenAiChatClient using the auto-
configuration.

Register/Call Functions with Prompt Options

In addition to the auto-configuration you can register callback functions, dynamically, with your Prompt requests:

This approach allows to dynamically chose different functions to be called based on the user input.

The [ToolCallWithPromptFunctionRegistrationIT.java] integration test provides a complete example of how to register a function with the OpenAiChatClient and use it in a prompt
request.

Function Calling Flow

The following diagram illustrates the flow of the OpenAiChatClient Function Calling:

OpenAiChatClient chatClient = ...

UserMessage userMessage = new UserMessage("What's the weather like in San Francisco, Tokyo, and Paris?");

ChatResponse response = chatClient.call(new Prompt(List.of(userMessage),
OpenAiChatOptions.builder().withEnabledFunction("CurrentWeather").build())); // (1) Enable the function

logger.info("Response: {}", response);

JAVA

you must enable, explicitly, the functions to be used in the prompt request using the OpenAiChatOptions.builder().withEnabledFunction(…) method (1).

OpenAiChatClient chatClient = ...

UserMessage userMessage = new UserMessage("What's the weather like in San Francisco, Tokyo, and Paris?");

var promptOptions = OpenAiChatOptions.builder()
.withToolCallbacks(List.of(new WeatherFunctionCallback(

"CurrentWeather",
"Get the weather in location",
MockWeatherService.Request.class)))

.build();

ChatResponse response = chatClient.call(new Prompt(List.of(userMessage), promptOptions));

logger.info("Response: {}", response);

JAVA

The in-prompt registered functions are enabled by default for the duration of this request.

Appendices:

OpenAI API Function Calling Flow

The following diagram illustrates the flow of the OpenAI API Function Calling:

[org.springframework.ai.openai.chat.api.tool.OpenAiApiToolFunctionCallTests] provides a complete example of how to call a function using the OpenAI API. It is based on the OpenAI
Function Calling tutorial.

© 2024 VMware, Inc. or its aÞliates. Terms of Use • Privacy • Trademark Guidelines • Thank you • Your California Privacy Rights • Cookie Settings

Apache®, Apache Tomcat®, Apache Kafka®, Apache Cassandra™, and Apache Geode™ are trademarks or registered trademarks of the Apache Software Foundation in the United States and/or

other countries. Java™, Java™ SE, Java™ EE, and OpenJDK™ are trademarks of Oracle and/or its aÞliates. Kubernetes® is a registered trademark of the Linux Foundation in the United States and
other countries. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Windows® and Microsoft® Azure are registered trademarks of Microsoft
Corporation. “AWS” and “Amazon Web Services” are trademarks or registered trademarks of Amazon.com Inc. or its aÞliates. All other trademarks and copyrights are property of their respective

owners and are only mentioned for informative purposes. Other names may be trademarks of their respective owners.

