-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Updated README.ipynb (and generated README.md)
- Loading branch information
Showing
2 changed files
with
7 additions
and
119 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,6 +8,7 @@ | |
"\n", | ||
"# MakeAgent\n", | ||
"\n", | ||
"WIP\n", | ||
"\n", | ||
"### Setup\n", | ||
"\n", | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,125 +1,12 @@ | ||
<!-- Warning, README.md is autogenerated from README.ipynb, do not edit it directly --> | ||
|
||
`pip install lr_schedules` | ||
# MakeAgent | ||
|
||
[![](https://github.com/sradc/lr_schedules/workflows/Python%20package/badge.svg)](https://github.com/sradc/lr_schedules/commits/) | ||
WIP | ||
|
||
# lr_schedules | ||
### Setup | ||
|
||
This project currently just contains `LinearScheduler`, for custom linear learning rate schedules. | ||
|
||
|
||
```python | ||
from lr_schedules import LinearScheduler | ||
import matplotlib.pyplot as plt | ||
import torch | ||
``` | ||
|
||
## PyTorch example, triangle | ||
|
||
|
||
```python | ||
times = [0, 0.5, 1] | ||
values = [0, 1, 0] | ||
|
||
W = torch.tensor([1.0], requires_grad=True) | ||
optimizer = torch.optim.SGD([W], lr=0.1) | ||
linear_scheduler = LinearScheduler(times, values, total_training_steps=100) | ||
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, linear_scheduler) | ||
|
||
lr_vals = [] | ||
for step in range(100): | ||
optimizer.zero_grad() | ||
loss = torch.sum(W**2) | ||
loss.backward() | ||
optimizer.step() | ||
scheduler.step() | ||
lr_vals.append(optimizer.param_groups[0]["lr"]) | ||
|
||
plt.figure(figsize=(5, 2)) | ||
plt.plot(lr_vals) | ||
plt.xlabel("Training step") | ||
plt.ylabel("Learning rate") | ||
plt.show() | ||
``` | ||
|
||
|
||
|
||
![README_files/README_3_0.png](https://raw.githubusercontent.com/sradc/lr_schedules/master/README_files/README_3_0.png) | ||
|
||
|
||
|
||
## Pytorch example, ramp up and down | ||
|
||
|
||
```python | ||
times = [0, 0.1, 0.9, 1] | ||
values = [0, 1, 0.9, 0] | ||
|
||
W = torch.tensor([1.0], requires_grad=True) | ||
optimizer = torch.optim.SGD([W], lr=0.1) | ||
linear_scheduler = LinearScheduler(times, values, total_training_steps=100) | ||
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, linear_scheduler) | ||
|
||
lr_vals = [] | ||
for step in range(100): | ||
optimizer.zero_grad() | ||
loss = torch.sum(W**2) | ||
loss.backward() | ||
optimizer.step() | ||
scheduler.step() | ||
lr_vals.append(optimizer.param_groups[0]["lr"]) | ||
|
||
plt.figure(figsize=(5, 2)) | ||
plt.plot(lr_vals) | ||
plt.xlabel("Training step") | ||
plt.ylabel("Learning rate") | ||
plt.show() | ||
``` | ||
|
||
|
||
|
||
![README_files/README_5_0.png](https://raw.githubusercontent.com/sradc/lr_schedules/master/README_files/README_5_0.png) | ||
|
||
|
||
|
||
## Pytorch example, specifying absolute number of steps | ||
|
||
|
||
```python | ||
times = [0, 12, 90, 100] | ||
values = [0, 1, 0.8, 0] | ||
|
||
W = torch.tensor([1.0], requires_grad=True) | ||
optimizer = torch.optim.SGD([W], lr=0.1) | ||
linear_scheduler = LinearScheduler(times, values) | ||
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, linear_scheduler) | ||
|
||
lr_vals = [] | ||
for step in range(100): | ||
optimizer.zero_grad() | ||
loss = torch.sum(W**2) | ||
loss.backward() | ||
optimizer.step() | ||
scheduler.step() | ||
lr_vals.append(optimizer.param_groups[0]["lr"]) | ||
|
||
plt.figure(figsize=(5, 2)) | ||
plt.plot(lr_vals) | ||
plt.xlabel("Training step") | ||
plt.ylabel("Learning rate") | ||
plt.show() | ||
``` | ||
|
||
|
||
|
||
![README_files/README_7_0.png](https://raw.githubusercontent.com/sradc/lr_schedules/master/README_files/README_7_0.png) | ||
|
||
|
||
|
||
## Dev set up of repo | ||
|
||
- Clone the repo | ||
- Install `poetry` (repo was run with python3.9) | ||
- Run `poetry install --with docs` | ||
- Clone the repo and `cd` into it | ||
- Run `poetry install` | ||
- Run `poetry run pre-commit install` | ||
|