-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler.rb
461 lines (403 loc) · 13.9 KB
/
euler.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
require 'debugger'
# The prime factors of 13195 are 5, 7, 13 and 29.
# What is the largest prime factor of the number 600851475143 ?
require 'prime'
num = 600851475143
def prime_factors(num)
orig_num = num
prime = 3
prime_factor_nums = []
while num >= prime
if num % prime == 0
prime_factor_nums << prime
end
puts prime_factor_nums
prime = next_prime(prime)
end
return prime_factor_nums
end
def next_prime(prime)
prime = prime + 1
while Prime.prime?(prime) == false
prime += 1
end
return prime
end
# puts prime_factors(num)
# also, ruby has a class for this...
# Prime.prime_division(num)
# ====================
# A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
# Find the largest palindrome made from the product of two 3-digit numbers.
def largest_palindrome_from_two_three_digit_nums
x = 100
y = 100
largest_product = 0
while x <= 999
while y <= 999
product = x * y
if product.to_s == product.to_s.reverse
largest_product = product if product > largest_product
end
y += 1
end
x += 1
y = x
end
return largest_product
end
# puts largest_palindrome_from_two_three_digit_nums
# 913*993=906609
# 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
# What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
def smallest_positive
divisibles =* (1..19)
answer = 20
answer_not_found = true
while answer_not_found
divisibles.each do |num|
if answer % num != 0
answer += 20
break
end
answer_not_found = false if num == 19
end
end
return answer
end
# puts smallest_positive
# ====================
# The sum of the squares of the first ten natural numbers is,
# 12 + 22 + ... + 102 = 385
# The square of the sum of the first ten natural numbers is,
# (1 + 2 + ... + 10)2 = 552 = 3025
# Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
# Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
def sum_of_squares
nums =* (1..100)
sum = 0
nums.each do |num|
sum += num*num
end
return sum
end
def square_of_sums
nums =* (1..100)
sum = nums.inject { |sum, num| sum + num }
return sum * sum
end
def difference
square_of_sums - sum_of_squares
end
# puts difference
# ====================
# By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
# What is the 10001st prime number?
def find_prime
num = 2
prime_count = 1
while prime_count < 10001
num += 1
if Prime.prime?(num)
prime_count += 1
end
end
return num
end
# puts find_prime
# ====================
# Find the greatest product of five consecutive digits in the 1000-digit number.
huge_number = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450
def greatest_product(huge_number)
range_start = 0
range_end = 4
huge_number_str = huge_number.inspect
largest_product = 0
while range_end < huge_number_str.length
current_five = huge_number_str[range_start..range_end]
current_five_product = 1
current_five.each_char do |char|
current_five_product *= char.to_i
end
largest_product = current_five_product if current_five_product > largest_product
range_start += 1
range_end += 1
end
return largest_product
end
# puts greatest_product(huge_number)
# ====================
# A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
# a2 + b2 = c2
# For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
# There exists exactly one Pythagorean triplet for which a + b + c = 1000.
# Find the product abc.
def find_pythagorean_triplet
sum = 100
a = 3
bb = 4
# cc = 0
# while a < sum/3
while bb < sum/2
if a**2 + bb**2 == 1000
cc = Math.sqrt(sum - a**2 - bb**2)
break
end
# bb += 1
end
# a += 1
# bb = a
# end
puts a
puts bb
puts cc
return a * bb * cc
end
# puts find_pythagorean_triplet
# ====================
# The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
# Find the sum of all the primes below two million.
def sum_primes
num = 3
sum = 2 # first prime is 2
while num < 2000000
if Prime.prime?(num)
sum += num
end
num += 2 # the distance b/t all primes except b/t 2 and 3 is at least 2. this is faster than adding just one each time!
end
return sum
end
# puts sum_primes
# 142913828922
# http://en.wikipedia.org/wiki/Prime_gap
# ====================
# In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
grid =
[[8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8],
[49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0],
[81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65],
[52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91],
[22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80],
[24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50],
[32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70],
[67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21],
[24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72],
[21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95],
[78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92],
[16, 39, 05, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57],
[86, 56, 0, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58],
[19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40],
[4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66],
[88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69],
[4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36],
[20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16],
[20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54],
[1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]]
# The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
# What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
def greatest_product_of_four(grid)
nums_in_prod = 4
grid_length = 20
greatest_product = 0
col = 0
row = 0
while row < 20
while col < 20
# horizontally
puts "col #{col}"
if col <= (grid_length - nums_in_prod)
current_product = grid[row][col]
puts current_product
index = 1
while index < nums_in_prod
puts grid[row][col + index]
current_product *= grid[row][col + index]
index += 1
end
puts 'done'
greatest_product = [current_product, greatest_product].max
end
# vertically
if col <= (grid_length - nums_in_prod) && (row <= 16)
current_product = grid[row][col]
index = 1
while index < nums_in_prod
current_product *= grid[row + index][col]
index += 1
end
greatest_product = [current_product, greatest_product].max
end
# diagonally up / forwards
if (row <= (grid_length - nums_in_prod)) && (col >= nums_in_prod)
current_product = grid[row][col]
index = 1
while index < nums_in_prod
current_product *= grid[row + index][col - index]
index += 1
end
greatest_product = [current_product, greatest_product].max
end
# diagonally down / forwards
if (col <= (grid_length - nums_in_prod)) && (row <= (grid_length - nums_in_prod))
current_product = grid[row][col]
index = 1
while index < nums_in_prod
current_product *= grid[row + index][col + index]
index += 1
end
greatest_product = [current_product, greatest_product].max
end
col += 1
end
col = 0
row += 1
end
return greatest_product
end
# puts greatest_product_of_four(grid)
# ====================
# The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
# Let us list the factors of the first seven triangle numbers:
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
# 10: 1,2,5,10
# 15: 1,3,5,15
# 21: 1,3,7,21
# 28: 1,2,4,7,14,28
# We can see that 28 is the first triangle number to have over five divisors.
# What is the value of the first triangle number to have over five hundred divisors?
def find_500_divisors
triangle_num = 0
natural_num = 1
divisors = 0
while divisors < 500
triangle_num += natural_num
if triangle_num > 500
divisor = 1
divisors = 0
sqrt = Math.sqrt(triangle_num)
while divisor <= sqrt
if triangle_num % divisor == 0
divisors += 2
end
divisor += 1
end
if sqrt * sqrt == triangle_num
divisors -= 1
end
end
natural_num += 1
end
return triangle_num
end
require 'time'
# puts Time.now
# puts find_500_divisors
# puts Time.now
# ====================
# Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
def first_ten_digits
sum = 0
File.open('largesum.txt') do |file|
file.each_line do |line|
sum += line.to_i
end
end
return sum.to_s[0..9].to_i
end
# puts first_ten_digits
# ====================
# The following iterative sequence is defined for the set of positive integers:
# n → n/2 (n is even)
# n → 3n + 1 (n is odd)
# Using the rule above and starting with 13, we generate the following sequence:
# 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
# It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
# Which starting number, under one million, produces the longest chain?
# NOTE: Once the chain starts the terms are allowed to go above one million.
class Collatz
attr_accessor :chain
attr_reader :starting_num
CHAINS = {1 => 1}
def initialize(starting_num)
@starting_num = starting_num
@chain = 1
end
def set_chain
n = self.starting_num
while (n != 1) && (n >= self.starting_num)
if n.even?
n = n/2
else
n = 3*n + 1
end
self.chain += 1
end
self.chain += CHAINS[n]
CHAINS[self.starting_num] = self.chain
end
end
class Purveyor
attr_accessor :longest_starting, :longest_chain
def initialize
@longest_starting = 1
@longest_chain = 1
end
def under(num)
(2..num).each do |n|
current = Collatz.new(n)
current.set_chain
if current.chain > self.longest_chain
self.longest_chain = current.chain
self.longest_starting = current.starting_num
end
end
return self.longest_starting
end
end
puts Purveyor.new.under(1000000)
# ====================
# Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.
# How many such routes are there through a 20×20 grid?
def lattice
grid_size = 20
paths = 1
index = 0
while index < grid_size
paths *= (grid_size * 2) - index
paths /= index + 1
index += 1
end
return paths
end
# puts lattice
# ====================
# 215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
# What is the sum of the digits of the number 21000?
def sum_power
big_num = 2**1000
sum = 0
big_num.to_s.each_char do |digit|
sum += digit.to_i
end
return sum
end
# puts sum_power
# ====================
# If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.
# If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?
# NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage.
def letters_in_numbers
one_to_nine = 3 + 3 + 5 + 4 + 4 + 3 + 5 + 5 + 4
ten_to_nineteen = 3 + 6 + 6 + 8 + 8 + 7 + 7 + 9 + 8 + 8
twenty_to_ninetynine = (6 + 6 + 5 + 5 + 5 + 7 + 6 + 6) * 10 + one_to_nine * 8
under_onehundred = one_to_nine + ten_to_nineteen + twenty_to_ninetynine
hundredand = 10 * 9 * 99
onehundred_to_nineninetynine = one_to_nine * 99 + hundredand + ten_to_nineteen * 9 + twenty_to_ninetynine * 9
thousand = 3 + 8
return one_to_nine + ten_to_nineteen + twenty_to_ninetynine + hundredand + onehundred_to_nineninetynine + thousand
end
# puts letters_in_numbers