-
Notifications
You must be signed in to change notification settings - Fork 901
/
GPU_puzzlers.py
693 lines (551 loc) · 15.2 KB
/
GPU_puzzlers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# # GPU Puzzles
# - by [Sasha Rush](http://rush-nlp.com) - [srush_nlp](https://twitter.com/srush_nlp)
# ![](https://github.com/srush/GPU-Puzzles/raw/main/cuda.png)
# GPU architectures are critical to machine learning, and seem to be
# becoming even more important every day. However, you can be an expert
# in machine learning without ever touching GPU code. It is hard to gain
# intuition working through abstractions.
# This notebook is an attempt to teach beginner GPU programming in a
# completely interactive fashion. Instead of providing text with
# concepts, it throws you right into coding and building GPU
# kernels. The exercises use NUMBA which directly maps Python
# code to CUDA kernels. It looks like Python but is basically
# identical to writing low-level CUDA code.
# In a few hours, I think you can go from basics to
# understanding the real algorithms that power 99% of deep learning
# today. If you do want to read the manual, it is here:
# [NUMBA CUDA Guide](https://numba.readthedocs.io/en/stable/cuda/index.html)
# I recommend doing these in Colab, as it is easy to get started. Be
# sure to make your own copy, turn on GPU mode in the settings (`Runtime / Change runtime type`, then set `Hardware accelerator` to `GPU`), and
# then get to coding.
# [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/GPU-Puzzles/blob/main/GPU_puzzlers.ipynb)
# (If you are into this style of puzzle, also check out my [Tensor
# Puzzles](https://github.com/srush/Tensor-Puzzles) for PyTorch.)
!pip install -qqq git+https://github.com/danoneata/chalk@srush-patch-1
!wget -q https://github.com/srush/GPU-Puzzles/raw/main/robot.png https://github.com/srush/GPU-Puzzles/raw/main/lib.py
import numba
import numpy as np
import warnings
from lib import CudaProblem, Coord
warnings.filterwarnings(
action="ignore", category=numba.NumbaPerformanceWarning, module="numba"
)
# ## Puzzle 1: Map
#
# Implement a "kernel" (GPU function) that adds 10 to each position of vector `a`
# and stores it in vector `out`. You have 1 thread per position.
# **Warning** This code looks like Python but it is really CUDA! You cannot use
# standard python tools like list comprehensions or ask for Numpy properties
# like shape or size (if you need the size, it is given as an argument).
# The puzzles only require doing simple operations, basically
# +, *, simple array indexing, for loops, and if statements.
# You are allowed to use local variables.
# If you get an
# error it is probably because you did something fancy :).
# *Tip: Think of the function `call` as being run 1 time for each thread.
# The only difference is that `cuda.threadIdx.x` changes each time.*
# +
def map_spec(a):
return a + 10
def map_test(cuda):
def call(out, a) -> None:
local_i = cuda.threadIdx.x
# FILL ME IN (roughly 1 lines)
return call
SIZE = 4
out = np.zeros((SIZE,))
a = np.arange(SIZE)
problem = CudaProblem(
"Map", map_test, [a], out, threadsperblock=Coord(SIZE, 1), spec=map_spec
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 2 - Zip
#
# Implement a kernel that adds together each position of `a` and `b` and stores it in `out`.
# You have 1 thread per position.
# +
def zip_spec(a, b):
return a + b
def zip_test(cuda):
def call(out, a, b) -> None:
local_i = cuda.threadIdx.x
# FILL ME IN (roughly 1 lines)
return call
SIZE = 4
out = np.zeros((SIZE,))
a = np.arange(SIZE)
b = np.arange(SIZE)
problem = CudaProblem(
"Zip", zip_test, [a, b], out, threadsperblock=Coord(SIZE, 1), spec=zip_spec
)
problem.show()
# +
# +
problem.check()
# -
# ## Puzzle 3 - Guards
#
# Implement a kernel that adds 10 to each position of `a` and stores it in `out`.
# You have more threads than positions.
# +
def map_guard_test(cuda):
def call(out, a, size) -> None:
local_i = cuda.threadIdx.x
# FILL ME IN (roughly 2 lines)
return call
SIZE = 4
out = np.zeros((SIZE,))
a = np.arange(SIZE)
problem = CudaProblem(
"Guard",
map_guard_test,
[a],
out,
[SIZE],
threadsperblock=Coord(8, 1),
spec=map_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 4 - Map 2D
#
# Implement a kernel that adds 10 to each position of `a` and stores it in `out`.
# Input `a` is 2D and square. You have more threads than positions.
# +
def map_2D_test(cuda):
def call(out, a, size) -> None:
local_i = cuda.threadIdx.x
local_j = cuda.threadIdx.y
# FILL ME IN (roughly 2 lines)
return call
SIZE = 2
out = np.zeros((SIZE, SIZE))
a = np.arange(SIZE * SIZE).reshape((SIZE, SIZE))
problem = CudaProblem(
"Map 2D", map_2D_test, [a], out, [SIZE], threadsperblock=Coord(3, 3), spec=map_spec
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 5 - Broadcast
#
# Implement a kernel that adds `a` and `b` and stores it in `out`.
# Inputs `a` and `b` are vectors. You have more threads than positions.
# +
def broadcast_test(cuda):
def call(out, a, b, size) -> None:
local_i = cuda.threadIdx.x
local_j = cuda.threadIdx.y
# FILL ME IN (roughly 2 lines)
return call
SIZE = 2
out = np.zeros((SIZE, SIZE))
a = np.arange(SIZE).reshape(SIZE, 1)
b = np.arange(SIZE).reshape(1, SIZE)
problem = CudaProblem(
"Broadcast",
broadcast_test,
[a, b],
out,
[SIZE],
threadsperblock=Coord(3, 3),
spec=zip_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 6 - Blocks
#
# Implement a kernel that adds 10 to each position of `a` and stores it in `out`.
# You have fewer threads per block than the size of `a`.
# *Tip: A block is a group of threads. The number of threads per block is limited, but we can
# have many different blocks. Variable `cuda.blockIdx` tells us what block we are in.*
# +
def map_block_test(cuda):
def call(out, a, size) -> None:
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
# FILL ME IN (roughly 2 lines)
return call
SIZE = 9
out = np.zeros((SIZE,))
a = np.arange(SIZE)
problem = CudaProblem(
"Blocks",
map_block_test,
[a],
out,
[SIZE],
threadsperblock=Coord(4, 1),
blockspergrid=Coord(3, 1),
spec=map_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 7 - Blocks 2D
#
# Implement the same kernel in 2D. You have fewer threads per block
# than the size of `a` in both directions.
# +
def map_block2D_test(cuda):
def call(out, a, size) -> None:
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
# FILL ME IN (roughly 4 lines)
return call
SIZE = 5
out = np.zeros((SIZE, SIZE))
a = np.ones((SIZE, SIZE))
problem = CudaProblem(
"Blocks 2D",
map_block2D_test,
[a],
out,
[SIZE],
threadsperblock=Coord(3, 3),
blockspergrid=Coord(2, 2),
spec=map_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 8 - Shared
#
# Implement a kernel that adds 10 to each position of `a` and stores it in `out`.
# You have fewer threads per block than the size of `a`.
# **Warning**: Each block can only have a *constant* amount of shared
# memory that threads in that block can read and write to. This needs
# to be a literal python constant not a variable. After writing to
# shared memory you need to call `cuda.syncthreads` to ensure that
# threads do not cross.
# (This example does not really need shared memory or syncthreads, but it is a demo.)
# +
TPB = 4
def shared_test(cuda):
def call(out, a, size) -> None:
shared = cuda.shared.array(TPB, numba.float32)
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
local_i = cuda.threadIdx.x
if i < size:
shared[local_i] = a[i]
cuda.syncthreads()
# FILL ME IN (roughly 2 lines)
return call
SIZE = 8
out = np.zeros(SIZE)
a = np.ones(SIZE)
problem = CudaProblem(
"Shared",
shared_test,
[a],
out,
[SIZE],
threadsperblock=Coord(TPB, 1),
blockspergrid=Coord(2, 1),
spec=map_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 9 - Pooling
#
# Implement a kernel that sums together the last 3 position of `a` and stores it in `out`.
# You have 1 thread per position. You only need 1 global read and 1 global write per thread.
# *Tip: Remember to be careful about syncing.*
# +
def pool_spec(a):
out = np.zeros(*a.shape)
for i in range(a.shape[0]):
out[i] = a[max(i - 2, 0) : i + 1].sum()
return out
TPB = 8
def pool_test(cuda):
def call(out, a, size) -> None:
shared = cuda.shared.array(TPB, numba.float32)
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
local_i = cuda.threadIdx.x
# FILL ME IN (roughly 8 lines)
return call
SIZE = 8
out = np.zeros(SIZE)
a = np.arange(SIZE)
problem = CudaProblem(
"Pooling",
pool_test,
[a],
out,
[SIZE],
threadsperblock=Coord(TPB, 1),
blockspergrid=Coord(1, 1),
spec=pool_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 10 - Dot Product
#
# Implement a kernel that computes the dot-product of `a` and `b` and stores it in `out`.
# You have 1 thread per position. You only need 2 global reads and 1 global write per thread.
# *Note: For this problem you don't need to worry about number of shared reads. We will
# handle that challenge later.*
# +
def dot_spec(a, b):
return a @ b
TPB = 8
def dot_test(cuda):
def call(out, a, b, size) -> None:
shared = cuda.shared.array(TPB, numba.float32)
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
local_i = cuda.threadIdx.x
# FILL ME IN (roughly 9 lines)
return call
SIZE = 8
out = np.zeros(1)
a = np.arange(SIZE)
b = np.arange(SIZE)
problem = CudaProblem(
"Dot",
dot_test,
[a, b],
out,
[SIZE],
threadsperblock=Coord(SIZE, 1),
blockspergrid=Coord(1, 1),
spec=dot_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 11 - 1D Convolution
#
# Implement a kernel that computes a 1D convolution between `a` and `b` and stores it in `out`.
# You need to handle the general case. You only need 2 global reads and 1 global write per thread.
# +
def conv_spec(a, b):
out = np.zeros(*a.shape)
len = b.shape[0]
for i in range(a.shape[0]):
out[i] = sum([a[i + j] * b[j] for j in range(len) if i + j < a.shape[0]])
return out
MAX_CONV = 4
TPB = 8
TPB_MAX_CONV = TPB + MAX_CONV
def conv_test(cuda):
def call(out, a, b, a_size, b_size) -> None:
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
local_i = cuda.threadIdx.x
# FILL ME IN (roughly 17 lines)
return call
# Test 1
SIZE = 6
CONV = 3
out = np.zeros(SIZE)
a = np.arange(SIZE)
b = np.arange(CONV)
problem = CudaProblem(
"1D Conv (Simple)",
conv_test,
[a, b],
out,
[SIZE, CONV],
Coord(1, 1),
Coord(TPB, 1),
spec=conv_spec,
)
problem.show()
# +
problem.check()
# -
# Test 2
# +
out = np.zeros(15)
a = np.arange(15)
b = np.arange(4)
problem = CudaProblem(
"1D Conv (Full)",
conv_test,
[a, b],
out,
[15, 4],
Coord(2, 1),
Coord(TPB, 1),
spec=conv_spec,
)
problem.show()
# -
# +
problem.check()
# -
# ## Puzzle 12 - Prefix Sum
#
# Implement a kernel that computes a sum over `a` and stores it in `out`.
# If the size of `a` is greater than the block size, only store the sum of
# each block.
# We will do this using the [parallel prefix sum](https://en.wikipedia.org/wiki/Prefix_sum) algorithm in shared memory.
# That is, each step of the algorithm should sum together half the remaining numbers.
# Follow this diagram:
# ![](https://user-images.githubusercontent.com/35882/178757889-1c269623-93af-4a2e-a7e9-22cd55a42e38.png)
# +
TPB = 8
def sum_spec(a):
out = np.zeros((a.shape[0] + TPB - 1) // TPB)
for j, i in enumerate(range(0, a.shape[-1], TPB)):
out[j] = a[i : i + TPB].sum()
return out
def sum_test(cuda):
def call(out, a, size: int) -> None:
cache = cuda.shared.array(TPB, numba.float32)
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
local_i = cuda.threadIdx.x
# FILL ME IN (roughly 12 lines)
return call
# Test 1
SIZE = 8
out = np.zeros(1)
inp = np.arange(SIZE)
problem = CudaProblem(
"Sum (Simple)",
sum_test,
[inp],
out,
[SIZE],
Coord(1, 1),
Coord(TPB, 1),
spec=sum_spec,
)
problem.show()
# +
problem.check()
# -
# Test 2
# +
SIZE = 15
out = np.zeros(2)
inp = np.arange(SIZE)
problem = CudaProblem(
"Sum (Full)",
sum_test,
[inp],
out,
[SIZE],
Coord(2, 1),
Coord(TPB, 1),
spec=sum_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 13 - Axis Sum
#
# Implement a kernel that computes a sum over each column of `a` and stores it in `out`.
# +
TPB = 8
def sum_spec(a):
out = np.zeros((a.shape[0], (a.shape[1] + TPB - 1) // TPB))
for j, i in enumerate(range(0, a.shape[-1], TPB)):
out[..., j] = a[..., i : i + TPB].sum(-1)
return out
def axis_sum_test(cuda):
def call(out, a, size: int) -> None:
cache = cuda.shared.array(TPB, numba.float32)
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
local_i = cuda.threadIdx.x
batch = cuda.blockIdx.y
# FILL ME IN (roughly 12 lines)
return call
BATCH = 4
SIZE = 6
out = np.zeros((BATCH, 1))
inp = np.arange(BATCH * SIZE).reshape((BATCH, SIZE))
problem = CudaProblem(
"Axis Sum",
axis_sum_test,
[inp],
out,
[SIZE],
Coord(1, BATCH),
Coord(TPB, 1),
spec=sum_spec,
)
problem.show()
# +
problem.check()
# -
# ## Puzzle 14 - Matrix Multiply!
#
# Implement a kernel that multiplies square matrices `a` and `b` and
# stores the result in `out`.
#
# *Tip: The most efficient algorithm here will copy a block into
# shared memory before computing each of the individual row-column
# dot products. This is easy to do if the matrix fits in shared
# memory. Do that case first. Then update your code to compute
# a partial dot-product and iteratively move the part you
# copied into shared memory.* You should be able to do the hard case
# in 6 global reads.
# +
def matmul_spec(a, b):
return a @ b
TPB = 3
def mm_oneblock_test(cuda):
def call(out, a, b, size: int) -> None:
a_shared = cuda.shared.array((TPB, TPB), numba.float32)
b_shared = cuda.shared.array((TPB, TPB), numba.float32)
i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
j = cuda.blockIdx.y * cuda.blockDim.y + cuda.threadIdx.y
local_i = cuda.threadIdx.x
local_j = cuda.threadIdx.y
# FILL ME IN (roughly 14 lines)
return call
# Test 1
SIZE = 2
out = np.zeros((SIZE, SIZE))
inp1 = np.arange(SIZE * SIZE).reshape((SIZE, SIZE))
inp2 = np.arange(SIZE * SIZE).reshape((SIZE, SIZE)).T
problem = CudaProblem(
"Matmul (Simple)",
mm_oneblock_test,
[inp1, inp2],
out,
[SIZE],
Coord(1, 1),
Coord(TPB, TPB),
spec=matmul_spec,
)
problem.show(sparse=True)
# +
problem.check()
# -
# Test 2
# +
SIZE = 8
out = np.zeros((SIZE, SIZE))
inp1 = np.arange(SIZE * SIZE).reshape((SIZE, SIZE))
inp2 = np.arange(SIZE * SIZE).reshape((SIZE, SIZE)).T
problem = CudaProblem(
"Matmul (Full)",
mm_oneblock_test,
[inp1, inp2],
out,
[SIZE],
Coord(3, 3),
Coord(TPB, TPB),
spec=matmul_spec,
)
problem.show(sparse=True)
# -
# +
problem.check()
# -