-
Notifications
You must be signed in to change notification settings - Fork 8
/
polynomial_regression.R
78 lines (68 loc) · 2.62 KB
/
polynomial_regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Polynomial Regression
# Importing the dataset
dataset = read.csv('Position_Salaries.csv')
dataset = dataset[2:3]
# Splitting the dataset into the Training set and Test set
# # install.packages('caTools')
# library(caTools)
# set.seed(123)
# split = sample.split(dataset$Salary, SplitRatio = 2/3)
# training_set = subset(dataset, split == TRUE)
# test_set = subset(dataset, split == FALSE)
# Feature Scaling
# training_set = scale(training_set)
# test_set = scale(test_set)
# Fitting Linear Regression to the dataset
lin_reg = lm(formula = Salary ~ .,
data = dataset)
# Fitting Polynomial Regression to the dataset
dataset$Level2 = dataset$Level^2
dataset$Level3 = dataset$Level^3
dataset$Level4 = dataset$Level^4
poly_reg = lm(formula = Salary ~ .,
data = dataset)
# Visualising the Linear Regression results
# install.packages('ggplot2')
library(ggplot2)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = dataset$Level, y = predict(lin_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('Truth or Bluff (Linear Regression)') +
xlab('Level') +
ylab('Salary')
# Visualising the Polynomial Regression results
# install.packages('ggplot2')
library(ggplot2)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = dataset$Level, y = predict(poly_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') +
ylab('Salary')
# Visualising the Regression Model results (for higher resolution and smoother curve)
# install.packages('ggplot2')
library(ggplot2)
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = x_grid, y = predict(poly_reg,
newdata = data.frame(Level = x_grid,
Level2 = x_grid^2,
Level3 = x_grid^3,
Level4 = x_grid^4))),
colour = 'blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') +
ylab('Salary')
# Predicting a new result with Linear Regression
predict(lin_reg, data.frame(Level = 6.5))
# Predicting a new result with Polynomial Regression
predict(poly_reg, data.frame(Level = 6.5,
Level2 = 6.5^2,
Level3 = 6.5^3,
Level4 = 6.5^4))