-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgl3_repn.py
241 lines (186 loc) · 6.95 KB
/
gl3_repn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import itertools
import operator
from e8theta_degree3.repn import ReplSpaceElement
from e8theta_degree3.young_tableau import (YoungTableu, poly_repn_dim,
semistandard_young_tableaux)
from sage.matrix.all import identity_matrix, matrix
from sage.misc.all import cached_function, cached_method, flatten, mul
from sage.modules.all import vector
from sage.rings.all import QQ, PolynomialRing
from sage.parallel.all import fork
from degree2.utils import find_linearly_indep_indices
@cached_function
def matrix_var(base_field=QQ):
R = PolynomialRing(base_field, names=[
'x%s%s' % (i, j) for i in range(3) for j in range(3)])
return matrix(3, R.gens())
def matrix_var_right_mul_dict(g):
'''
Return a dictionary which sends matrix_var() => matrix_var() * g.
'''
m = matrix_var()
m1 = m * g
return {m[i, j]: m1[i, j] for i in range(3) for j in range(3)}
def left_action_as_pol(pol, g):
d = matrix_var_right_mul_dict(g)
return pol.subs(d)
class BiDeterminant(object):
def __init__(self, a, b):
self._a = a
self._b = b
def __repr__(self):
return repr(self.factor())
@property
def left_tableau(self):
return self._a
@property
def right_tableau(self):
return self._b
@cached_method
def determinants(self):
m = matrix_var()
res = []
for l1, l2 in zip(self.left_tableau.col_numbers, self.right_tableau.col_numbers):
if l1 and l2:
res.append(m.matrix_from_rows_and_columns(
[i - 1 for i in l1], [j - 1 for j in l2]).det())
else:
# empty matrix
res.append(matrix(QQ, []))
return res
def factor(self):
const = QQ(1)
dets = []
for d in self.determinants():
const = const * d.lc()
dets.append(d * d.lc() ** (-1))
l = [(k, len(list(v)))
for k, v in itertools.groupby(sorted(dets), key=lambda x: x)]
return NormFactorELt(const, l)
def as_pol(self):
return mul(a for a in self.determinants())
def subs_and_compute_pol(self, d):
return mul([a.subs(d) for a in self.determinants()], matrix_var().base_ring()(1))
def __hash__(self):
return hash(('BiDeterminant', self.as_pol()))
def __eq__(self, other):
if isinstance(other, BiDeterminant):
return self.as_pol() == other.as_pol()
else:
return False
class BiDetAsstoSSYT(BiDeterminant):
def __init__(self, b, wt):
t = _t_lambda(wt)
super(BiDetAsstoSSYT, self).__init__(t, b)
def element_weight(self):
d = {i + 1: v for i, v in enumerate(identity_matrix(QQ, 3).columns())}
return tuple(sum(d[a] for a in flatten(self.right_tableau.col_numbers)))
def _t_lambda(wt):
return YoungTableu(n=3, row_numbers=[[i + 1 for _ in range(a)]
for i, a in enumerate(wt)])
@cached_function
def gl3_repn_module(wt):
return GL3RepnModule(wt)
class GL3RepnModule(object):
def __init__(self, wt):
self._wt = wt
@property
def wt(self):
return self._wt
@cached_method
def dimension(self):
return poly_repn_dim(self.wt)
@cached_method
def basis_as_pol(self):
R = matrix_var().base_ring()
return [R(b.as_pol()) for b in self.basis()]
@cached_method
def basis(self):
d = {i + 1: v for i, v in enumerate(identity_matrix(QQ, 3).columns())}
ssyt = list(semistandard_young_tableaux(3, self.wt))
if self.wt[0] != 0:
ssyt = list(reversed(
sorted(ssyt,
key=lambda x: (list(sum(d[a] for a in flatten(x.col_numbers))) +
sum([a[self.wt[-1]:] for a in x.row_numbers], [])))))
return [BiDetAsstoSSYT(a, self.wt) for a in ssyt]
@cached_method
def linearly_indep_tpls(self):
kys = reduce(operator.add, [a.dict().keys()
for a in self.basis_as_pol()], [])
kys = list(set(kys))
vecs = [[a[t] for a in self.basis_as_pol()] for t in kys]
return [kys[i] for i in find_linearly_indep_indices(vecs, self.dimension())]
@cached_method
def _transform_mat_inv(self):
m = matrix([[b[t] for t in self.linearly_indep_tpls()] for b in self.basis_as_pol()])
return m**(-1)
def to_vector(self, a):
'''
a: an element of the parent of matrix_var().
Return vector corresponding to a.
'''
R = matrix_var().base_ring()
a = R(a)
v = vector([a[t] for t in self.linearly_indep_tpls()])
m = self._transform_mat_inv()
return v * m
def to_pol(self, v):
return sum(a * b for a, b in zip(v, self.basis_as_pol()))
def matrix_representaion(self, g):
'''
g: matrix of size 3.
Return matrix representation of the left action of g by self.basis_as_pol().
Here we take the matrix representation rho(g) so that
(b1(Xg), ..., bm(Xg)) = (b1(X), ..., bm(X)) rho(g.transpose()).transpose(),
where b1, ..., bm are basis as polynomials.
'''
d = matrix_var_right_mul_dict(g.transpose())
bs_acted = [a.subs_and_compute_pol(d) for a in self.basis()]
m = matrix([[a[t] for t in self.linearly_indep_tpls()] for a in bs_acted])
return m * self._transform_mat_inv()
def __call__(self, v):
'''
v: vector with length self.dimension()
Create an element which corresponds to GL3RepnElement
'''
if len(v) != self.dimension():
raise ValueError
return GL3RepnElement(v, self.wt)
@fork # to reduce memory usage
def matrix_repn(M, g):
d = matrix_var_right_mul_dict(g.transpose())
bs_acted = [a.subs_and_compute_pol(d) for a in M.basis()]
m = matrix([[a[t] for t in M.linearly_indep_tpls()] for a in bs_acted])
return m * M._transform_mat_inv()
class GL3RepnElement(ReplSpaceElement):
def __init__(self, v, wt):
super(GL3RepnElement, self).__init__(v, wt)
self._parent = gl3_repn_module(wt)
def left_action(self, g):
det_wt = self.weight[-1]
non_det_wt = tuple([a - det_wt for a in self.weight])
M = gl3_repn_module(non_det_wt)
m = M.matrix_representaion(g)
return GL3RepnElement(m * self.vector * g.det()**det_wt, self.weight)
def parent(self):
return self._parent
def dimension(self):
return self.parent().dimension()
class NormFactorELt(object):
def __init__(self, c, facs):
self._c = c
self._facs = facs
@property
def const(self):
return self._c
@property
def pols(self):
return self._facs
def __iter__(self):
yield (self.const, 1)
for a in self.pols:
yield a
def __repr__(self):
l = [self.const] + self.pols
return repr(l)