-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
261 lines (194 loc) · 6.92 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import pandas as pd
import geopandas as gpd
import seaborn as sns
import pycountry
import matplotlib.pyplot as plt
import numpy as np
import geopy
import sys
import os
import colors
import time
def getColumns(file):
df = pd.read_csv('./files/' + file)
columns = df.columns.tolist()
logic_columns = []
for column in columns:
if ' ' not in column:
logic_columns.append(column)
return logic_columns
def barChart(file, column, sort_by_count, bars):
df = pd.read_csv('./files/' + file)
sort = sort_by_count == "1"
df_parsed = df[[column]].dropna()
values = df_parsed[column].value_counts(sort=sort).index.tolist()
counts = df_parsed[column].value_counts(sort=sort).tolist()
if bars == 'head':
values = df_parsed[column].value_counts(sort=sort).index.tolist()[:10]
counts = df_parsed[column].value_counts(sort=sort).tolist()[:10]
if bars == 'tail':
values = df_parsed[column].value_counts(
sort=sort).index.tolist()[-10:]
counts = df_parsed[column].value_counts(sort=sort).tolist()[-10:]
# Make plot
if sort:
plt.bar(range(len(values)), list(
map(float, counts)), color=colors.GREY)
plt.xticks(range(len(values)), values, rotation='vertical')
else:
plt.bar(values, counts, color=colors.GREY)
plt.xticks(rotation='vertical')
plt.xlabel(column)
plt.ylabel('Amount')
plt.title(file)
# save img
plot_name = saveImage()
return plot_name
"""
def lineChart(file, year, group, bins):
# in case of globalterrorism.csv, recommended groups are:
# attacktype1_txt, targtype1_txt, region_txt, success, suicide, weaptype1_txt
count = 0
style = 0
styles = ['solid', 'dashed', 'dotted', 'dashdot']
clrs = colors.COLORS
df = pd.read_csv('./files/' + file)
df_parsed = df[[year, group]]
if bins != 'default':
bins = int(bins)
df_reduced = df[::bins]
df_parsed = df_reduced[[year, group]]
group_list = df_parsed[group].unique()
for member in group_list:
df_group = df_parsed.loc[df_parsed[group] == member]
values = df_group[year].value_counts().sort_index(
ascending=True).index.tolist()
counts = df_group[year].value_counts(
).sort_index(ascending=True).tolist()
plt.plot(values, counts, color=clrs[count],
label=member, linestyle=styles[style])
if count < len(clrs) - 1:
count += 1
else:
style += 1
count = 0
if style == len(styles)-1:
style = 0
plt.legend()
plt.xlabel(year)
plt.ylabel('amount')
# save img
plot_name = saveImage()
return plot_name
"""
def lineChart(file, time, col2, col3, col4, bins):
count = 0
clrs = colors.COLORS
df = pd.read_csv('./files/' + file)
columns = [col2, col3, col4]
for col in columns:
if col != 'None':
df_parsed = df[[time, col]].dropna()
if bins != 'auto':
bins = int(bins)
df_parsed = df_parsed[::bins]
timelist = np.array(
df_parsed[time].sort_index(ascending=True).tolist())
x = df_parsed[time].sort_values(ascending=True).tolist()
y = df_parsed[col].tolist()
plt.plot(x, y, color=clrs[count], label=col)
if count < len(clrs) - 1:
count += 1
plt.legend()
plt.xlabel(time)
plt.ylabel(col2)
plt.title(file)
# save img
plot_name = saveImage()
return plot_name
def scatterPlot(file, column1, column2, bins):
full_df = pd.read_csv('./files/' + file)
df = full_df[[column1, column2]].dropna()
if bins != 'auto':
bins = int(bins)
df = df[::bins]
x = df[[column1]]
y = df[[column2]]
plt.scatter(x, y, color=colors.GREEN)
plt.xlabel(column1)
plt.ylabel(column2)
plt.title(file)
plot_name = saveImage()
return plot_name
def histogramPlot(file, column1, hue, stat, bins):
df = pd.read_csv('./files/' + file)
df = df.astype('str')
if hue != 'None':
# sns.histplot(data=df, x=column1, stat=stat, binwidth=bins, hue=column2)
sns.histplot(data=df, x=column1, bins=bins, hue=hue, kde=True)
plt.xticks(rotation=70, size=5)
else:
# sns.histplot(data=df, x=column1, stat=stat, binwidth=bins)
sns.histplot(data=df, x=column1, bins=bins, kde=True)
plt.xticks(rotation=70, size=5)
plot_name = saveImage()
return plot_name
def boxPlot(file, column1, column2, hue, bins):
df = pd.read_csv('./files/' + file)
if bins != 'auto':
bins = int(bins)
df = df[::bins]
if hue != 'None':
# sns.histplot(data=df, x=column1, stat=stat, binwidth=bins, hue=column2)
sns.boxplot(data=df, x=column1, y=column2, hue=hue)
plt.xticks(rotation=70, size=5)
else:
# sns.histplot(data=df, x=column1, stat=stat, binwidth=bins)
sns.boxplot(data=df, x=column1, y=column2)
plt.xticks(rotation=70, size=5)
plot_name = saveImage()
return plot_name
def mapPlot(file, lonlat, countries, plot_col):
df = pd.read_csv('./files/' + file)
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
if lonlat == 'True':
gdf = gpd.GeoDataFrame(
df, geometry=gpd.points_from_xy(df.Longitud, df.Latitud))
ax = world.plot(column=plot_col, color=colors.GREY,
edgecolor='black', legend=True)
gdf.plot(ax=ax, color=colors.RED)
else:
location = pd.read_csv(
'./files/world_country_and_usa_states_latitude_and_longitude_values.csv')
location.rename(columns={'country': 'name'}, inplace=True)
countries = df[[countries]].values.tolist()
df['CODE'] = alpha3code(countries)
world.columns = ['pop_est', 'continent',
'name', 'CODE', 'gdp_md_est', 'geometry']
small_df = df[['CODE', plot_col]]
# TRIED TO ONCLUDE THE REST OF THE WORLD, BUT left-join DIDN'T WORK...
merge = pd.merge(world, small_df, on='CODE')
merge = pd.merge(merge, location, on='name')
merge.plot(column=plot_col, scheme="quantiles",
legend=True, cmap='viridis')
plt.title(plot_col + ' in the world.')
plot_name = saveImage()
return plot_name
def alpha3code(column):
CODE = []
for country in column:
try:
code = pycountry.countries.get(name=str(country[0])).alpha_3
CODE.append(code)
except:
CODE.append('None')
return CODE
def saveImage():
new_plot_name = "plot" + str(time.time()) + ".png"
for filename in os.listdir('static/'):
if filename.startswith('plot'): # not to remove other images
os.remove('static/' + filename)
plt.tight_layout()
plt.savefig('static/' + new_plot_name, dpi=140)
plt.close()
return new_plot_name