-
Notifications
You must be signed in to change notification settings - Fork 276
/
Copy pathcairo_runner.py
832 lines (725 loc) · 33.3 KB
/
cairo_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
from typing import Any, Dict, List, Mapping, Optional, Sequence, Set, Tuple, Type, TypeVar, Union
from starkware.cairo.lang.builtins.bitwise.bitwise_builtin_runner import BitwiseBuiltinRunner
from starkware.cairo.lang.builtins.hash.hash_builtin_runner import HashBuiltinRunner
from starkware.cairo.lang.builtins.range_check.range_check_builtin_runner import (
RangeCheckBuiltinRunner,
)
from starkware.cairo.lang.builtins.signature.signature_builtin_runner import SignatureBuiltinRunner
from starkware.cairo.lang.compiler.cairo_compile import (
compile_cairo,
compile_cairo_files,
get_module_reader,
)
from starkware.cairo.lang.compiler.debug_info import DebugInfo
from starkware.cairo.lang.compiler.expression_simplifier import to_field_element
from starkware.cairo.lang.compiler.preprocessor.default_pass_manager import default_pass_manager
from starkware.cairo.lang.compiler.preprocessor.preprocessor import Preprocessor
from starkware.cairo.lang.compiler.program import Program, ProgramBase
from starkware.cairo.lang.instances import LAYOUTS
from starkware.cairo.lang.vm.builtin_runner import BuiltinRunner, InsufficientAllocatedCells
from starkware.cairo.lang.vm.cairo_pie import (
CairoPie,
CairoPieMetadata,
ExecutionResources,
SegmentInfo,
)
from starkware.cairo.lang.vm.crypto import pedersen_hash, verify_ecdsa
from starkware.cairo.lang.vm.memory_dict import MemoryDict
from starkware.cairo.lang.vm.memory_segments import MemorySegmentManager
from starkware.cairo.lang.vm.output_builtin_runner import OutputBuiltinRunner
from starkware.cairo.lang.vm.relocatable import MaybeRelocatable, RelocatableValue, relocate_value
from starkware.cairo.lang.vm.trace_entry import relocate_trace
from starkware.cairo.lang.vm.utils import (
MemorySegmentAddresses,
MemorySegmentRelocatableAddresses,
ResourcesError,
RunResources,
)
from starkware.cairo.lang.vm.vm import RunContext, VirtualMachine, get_perm_range_check_limits
from starkware.crypto.signature.signature import inv_mod_curve_size
from starkware.python.math_utils import next_power_of_2, safe_div
from starkware.python.utils import WriteOnceDict
from starkware.starkware_utils.subsequence import is_subsequence
TCairoRunner = TypeVar("TCairoRunner", bound="CairoRunner")
def verify_ecdsa_sig(public_key, msg, signature) -> bool:
"""
Returns True if the given ECDSA signature is valid for the given public key and message hash.
Signature is a pair (r, s).
"""
r, s = signature
return verify_ecdsa(msg, r, s, public_key)
def process_ecdsa(public_key, msg, signature):
"""
Returns an (r, s) ECDSA signature in the {'r': hex(r), 'w': hex(s^-1)} format, as expected by
the ECDSA component.
"""
r, s = signature
return {"r": hex(r), "w": hex(inv_mod_curve_size(s))}
class CairoRunner:
def __init__(
self,
program: ProgramBase,
layout: str = "plain",
memory: MemoryDict = None,
proof_mode: Optional[bool] = None,
allow_missing_builtins: Optional[bool] = None,
):
self.program = program
self.layout = layout
self.builtin_runners: Dict[str, BuiltinRunner] = {}
self.original_steps = None
self.proof_mode = False if proof_mode is None else proof_mode
self.allow_missing_builtins = (
False if allow_missing_builtins is None else allow_missing_builtins
)
instance = LAYOUTS[self.layout]
if not allow_missing_builtins:
non_existing_builtins = set(self.program.builtins) - set(instance.builtins.keys())
assert (
len(non_existing_builtins) == 0
), f'Builtins {non_existing_builtins} are not present in layout "{self.layout}"'
builtin_factories = dict(
output=lambda name, included: OutputBuiltinRunner(included=included),
pedersen=lambda name, included: HashBuiltinRunner(
name=name,
included=included,
ratio=instance.builtins["pedersen"].ratio,
hash_func=pedersen_hash,
),
range_check=lambda name, included: RangeCheckBuiltinRunner(
included=included,
ratio=instance.builtins["range_check"].ratio,
inner_rc_bound=2 ** 16,
n_parts=instance.builtins["range_check"].n_parts,
),
ecdsa=lambda name, included: SignatureBuiltinRunner(
name=name,
included=included,
ratio=instance.builtins["ecdsa"].ratio,
process_signature=process_ecdsa,
verify_signature=verify_ecdsa_sig,
),
bitwise=lambda name, included: BitwiseBuiltinRunner(
included=included, bitwise_builtin=instance.builtins["bitwise"]
),
)
for name in instance.builtins:
factory = builtin_factories.get(name)
assert factory is not None, f"The {name} builtin is not supported."
included = name in self.program.builtins
# In proof mode all the builtin_runners are required.
if included or self.proof_mode:
self.builtin_runners[f"{name}_builtin"] = factory( # type: ignore
name=name, included=included
)
supported_builtin_list = list(builtin_factories.keys())
err_msg = (
f"The builtins specified by the %builtins directive must be subsequence of "
f"{supported_builtin_list}. Got {self.program.builtins}."
)
assert is_subsequence(self.program.builtins, supported_builtin_list), err_msg
self.memory = memory if memory is not None else MemoryDict()
self.segments = MemorySegmentManager(memory=self.memory, prime=self.program.prime)
self.segment_offsets: Optional[Dict[int, int]] = None
self.final_pc: Optional[RelocatableValue] = None
# Flags used to ensure a safe use.
self._run_ended: bool = False
self._segments_finalized: bool = False
# A set of memory addresses accessed by the VM, after relocation of temporary segments into
# real ones.
self.accessed_addresses: Optional[Set[RelocatableValue]] = None
@classmethod
def from_file(
cls: Type[TCairoRunner],
filename: str,
prime: int,
layout: str = "plain",
remove_hints: bool = False,
remove_builtins: bool = False,
memory: MemoryDict = None,
preprocessor_cls: Type[Preprocessor] = Preprocessor,
proof_mode: Optional[bool] = None,
) -> TCairoRunner:
module_reader = get_module_reader(cairo_path=[])
program = compile_cairo_files(
files=[filename],
debug_info=True,
pass_manager=default_pass_manager(
prime=prime, read_module=module_reader.read, preprocessor_cls=preprocessor_cls
),
)
if remove_hints:
program.hints = {}
if remove_builtins:
program.builtins = []
return cls(program, layout, memory=memory, proof_mode=proof_mode)
# Functions for the running sequence.
def initialize_segments(self, program_base=None):
# Program segment.
self.program_base = self.segments.add() if program_base is None else program_base
# Execution segment.
self.execution_base = self.segments.add()
# Builtin segments.
for builtin_runner in self.builtin_runners.values():
builtin_runner.initialize_segments(self)
def initialize_main_entrypoint(self):
"""
Initializes state for running a program from the main() entrypoint.
If self.proof_mode == True, the execution starts from the start label rather then
the main() function.
Returns the value of the program counter after returning from main.
"""
self.execution_public_memory: List[int] = []
stack: List[MaybeRelocatable] = []
for builtin_name in self.program.builtins:
builtin_runner = self.builtin_runners.get(f"{builtin_name}_builtin")
if builtin_runner is None:
assert self.allow_missing_builtins, "Missing builtin."
stack += [0]
else:
stack += builtin_runner.initial_stack()
if self.proof_mode:
# Add the dummy last fp and pc to the public memory, so that the verifier can enforce
# [fp - 2] = fp.
stack_prefix: List[MaybeRelocatable] = [self.execution_base + 2, 0]
stack = stack_prefix + stack
self.execution_public_memory = list(range(len(stack)))
assert isinstance(
self.program, Program
), "--proof_mode cannot be used with a StrippedProgram."
self.initialize_state(self.program.start, stack)
self.initial_fp = self.initial_ap = self.execution_base + 2
return self.program_base + self.program.get_label("__end__")
else:
return_fp = self.segments.add()
main = self.program.main
assert main is not None, "Missing main()."
return self.initialize_function_entrypoint(main, stack, return_fp=return_fp)
def initialize_function_entrypoint(
self,
entrypoint: Union[str, int],
args: Sequence[MaybeRelocatable],
return_fp: MaybeRelocatable = 0,
):
end = self.segments.add()
stack = list(args) + [return_fp, end]
self.initialize_state(entrypoint, stack)
self.initial_fp = self.initial_ap = self.execution_base + len(stack)
self.final_pc = end
return end
def initialize_state(self, entrypoint: Union[str, int], stack: Sequence[MaybeRelocatable]):
self.initial_pc = self.program_base + self._to_pc(entrypoint)
# Load program.
self.load_data(self.program_base, self.program.data)
# Load stack.
self.load_data(self.execution_base, stack)
def initialize_vm(
self, hint_locals, static_locals: Optional[Dict[str, Any]] = None, vm_class=VirtualMachine
):
context = RunContext(
pc=self.initial_pc,
ap=self.initial_ap,
fp=self.initial_fp,
memory=self.memory,
prime=self.program.prime,
)
if static_locals is None:
static_locals = {}
self.vm = vm_class(
self.program,
context,
hint_locals=hint_locals,
static_locals=dict(segments=self.segments, **static_locals),
builtin_runners=self.builtin_runners,
program_base=self.program_base,
)
for builtin_runner in self.builtin_runners.values():
builtin_runner.add_validation_rules(self)
builtin_runner.add_auto_deduction_rules(self)
self.vm.validate_existing_memory()
def run_until_label(
self, label_or_pc: Union[str, int], run_resources: Optional[RunResources] = None
):
"""
Runs the VM until label is reached, and stops right before that instruction is executed.
'label_or_pc' should be either a label string or an integer offset from the program_base.
"""
label = self._to_pc(label_or_pc)
self.run_until_pc(self.program_base + label, run_resources=run_resources)
def run_until_pc(self, addr: MaybeRelocatable, run_resources: Optional[RunResources] = None):
"""
Runs the VM until pc reaches 'addr', and stop right before that instruction is executed.
"""
if run_resources is None:
run_resources = RunResources(n_steps=None)
while self.vm.run_context.pc != addr and not run_resources.consumed:
self.vm_step()
run_resources.consume_step()
if self.vm.run_context.pc != addr:
raise self.vm.as_vm_exception(
ResourcesError("Error: End of program was not reached"), with_traceback=False
)
def vm_step(self):
if self.vm.run_context.pc == self.final_pc:
raise self.vm.as_vm_exception(
Exception("Error: Execution reached the end of the program."),
with_traceback=False,
)
self.vm.step()
def run_for_steps(self, steps: int):
"""
Runs the VM for 'steps' steps.
"""
for _ in range(steps):
self.vm_step()
def run_until_steps(self, steps: int):
"""
Runs the VM (not necessarily from step 0) until 'steps' steps have been run.
Does nothing if 'steps' steps or more have been run already.
"""
self.run_for_steps(max(steps - self.vm.current_step, 0))
def run_until_next_power_of_2(self):
"""
Runs the VM until the step count reaches the next power of 2.
"""
self.run_until_steps(next_power_of_2(self.vm.current_step))
def end_run(self, disable_trace_padding: bool = True, disable_finalize_all: bool = False):
assert not self._run_ended, "end_run called twice."
self.accessed_addresses = {
self.vm_memory.relocate_value(addr) for addr in self.vm.accessed_addresses
}
self.vm_memory.relocate_memory()
self.vm.end_run()
if disable_finalize_all:
# For tests.
return
# Freeze to enable caching; No changes in memory should be made from now on.
self.vm_memory.freeze()
# Deduce the size of each segment from its usage.
self.segments.compute_effective_sizes()
if self.proof_mode and not disable_trace_padding:
self.run_until_next_power_of_2()
while not self.check_used_cells():
self.run_for_steps(1)
self.run_until_next_power_of_2()
self._run_ended = True
def read_return_values(self):
"""
Reads builtin return values (end pointers) and adds them to the public memory.
Note: end_run() must precede a call to this method.
"""
assert self._run_ended, "Run must be ended before calling read_return_values."
pointer = self.vm.run_context.ap
for builtin_name in self.program.builtins[::-1]:
builtin_runner = self.builtin_runners.get(f"{builtin_name}_builtin")
if builtin_runner is None:
assert self.allow_missing_builtins, "Missing builtin."
pointer -= 1
assert (
self.vm_memory[pointer] == 0
), f'The stop pointer of the missing builtin "{builtin_name}" must be 0.'
else:
pointer = builtin_runner.final_stack(self, pointer)
assert (
not self._segments_finalized
), "Cannot add the return values to the public memory after segment finalization."
# Add return values to public memory.
self.execution_public_memory += list(
range(pointer - self.execution_base, self.vm.run_context.ap - self.execution_base)
)
def mark_as_accessed(self, address: RelocatableValue, size: int):
"""
Marks the memory range [address, address + size) as accessed.
This is useful when a memory range is not accessed in a partial scenario
but is known to be accessed in the real use case.
For example, a StarkNet contract entry point might not use all the information provided by
the StarkNet OS.
"""
assert self.accessed_addresses is not None
for i in range(size):
self.accessed_addresses.add(address + i)
def check_used_cells(self):
"""
Returns True if there are enough allocated cells for the builtins.
If not, the number of steps should be increased or a different layout should be used.
"""
try:
for builtin_runner in self.builtin_runners.values():
builtin_runner.get_used_cells_and_allocated_size(self)
self.check_range_check_usage()
self.check_memory_usage()
self.check_diluted_check_usage()
except InsufficientAllocatedCells as e:
print(f"Warning: {e} Increasing number of steps.")
return False
return True
def finalize_segments(self):
"""
Finalizes the segments.
Note:
1. end_run() must precede a call to this method.
2. Call read_return_values() *before* finalize_segments(), otherwise the return values
will not be included in the public memory.
"""
if self._segments_finalized:
return
assert self._run_ended, "Run must be ended before calling finalize_segments."
self.segments.finalize(
self.program_base.segment_index,
size=len(self.program.data),
public_memory=[(i, 0) for i in range(len(self.program.data))],
)
self.segments.finalize(
self.execution_base.segment_index,
public_memory=[
(x + self.execution_base.offset, 0) for x in self.execution_public_memory
],
)
for builtin_runner in self.builtin_runners.values():
builtin_runner.finalize_segments(self)
self._segments_finalized = True
def finalize_segments_by_cairo_pie(self, cairo_pie: CairoPie):
for segment_info in cairo_pie.metadata.all_segments():
self.segments.finalize(segment_info.index, segment_info.size)
def get_air_private_input(self):
return {
name: value
for builtin_runner in self.builtin_runners.values()
for name, value in builtin_runner.air_private_input(self).items()
}
def get_perm_range_check_limits(self):
rc_min, rc_max = get_perm_range_check_limits(self.vm.trace, self.vm_memory)
for builtin_runner in self.builtin_runners.values():
range_check_usage = builtin_runner.get_range_check_usage(self)
if range_check_usage is None:
continue
rc_min = min(rc_min, range_check_usage[0])
rc_max = max(rc_max, range_check_usage[1])
return rc_min, rc_max
def check_range_check_usage(self):
"""
Checks that there are enough trace cells to fill the entire range checks range.
"""
rc_min, rc_max = self.get_perm_range_check_limits()
instance = LAYOUTS[self.layout]
rc_units_used_by_builtins = sum(
builtin_runner.get_used_perm_range_check_units(self)
for builtin_runner in self.builtin_runners.values()
)
# Out of the range check units allowed per step three are used for the instruction.
unused_rc_units = (instance.rc_units - 3) * self.vm.current_step - rc_units_used_by_builtins
rc_usage_upper_bound = rc_max - rc_min
if unused_rc_units < rc_usage_upper_bound:
raise InsufficientAllocatedCells(
f"There are only {unused_rc_units} cells to fill the range checks holes, but "
f"potentially {rc_usage_upper_bound} are required."
)
def get_memory_holes(self):
assert self.accessed_addresses is not None
# Collect memory addresses that are accessed by the builtin (and therefore are not counted
# as memory holes).
builtin_accessed_addresses = {
addr
for builtin_runner in self.builtin_runners.values()
for addr in builtin_runner.get_memory_accesses(self)
}
return self.segments.get_memory_holes(
accessed_addresses=self.accessed_addresses | builtin_accessed_addresses
)
def check_memory_usage(self):
"""
Checks that there are enough trace cells to fill the entire memory range.
"""
instance = LAYOUTS[self.layout]
builtins_memory_units = sum(
builtin_runner.get_allocated_memory_units(self)
for builtin_runner in self.builtin_runners.values()
)
# Out of the memory units available per step, a fraction is used for public memory, and
# four are used for the instruction.
total_memory_units = instance.memory_units_per_step * self.vm.current_step
public_memory_units = safe_div(total_memory_units, instance.public_memory_fraction)
instruction_memory_units = 4 * self.vm.current_step
unused_memory_units = total_memory_units - (
public_memory_units + instruction_memory_units + builtins_memory_units
)
memory_address_holes = self.get_memory_holes()
if unused_memory_units < memory_address_holes:
raise InsufficientAllocatedCells(
f"There are only {unused_memory_units} cells to fill the memory address holes, but "
f"{memory_address_holes} are required."
)
def check_diluted_check_usage(self):
"""
Checks that there are enough trace cells to fill the entire diluted checks.
"""
instance = LAYOUTS[self.layout]
if instance.diluted_pool_instance_def is None:
return
diluted_units_used_by_builtins = sum(
builtin_runner.get_used_diluted_check_units(
diluted_spacing=instance.diluted_pool_instance_def.spacing,
diluted_n_bits=instance.diluted_pool_instance_def.n_bits,
)
* safe_div(
self.vm.current_step,
getattr(builtin_runner, "ratio", 1),
)
for builtin_runner in self.builtin_runners.values()
)
diluted_units = instance.diluted_pool_instance_def.units_per_step * self.vm.current_step
unused_diluted_units = diluted_units - diluted_units_used_by_builtins
diluted_usage_upper_bound = 2 ** instance.diluted_pool_instance_def.n_bits
if unused_diluted_units < diluted_usage_upper_bound:
raise InsufficientAllocatedCells(
f"There are only {unused_diluted_units} cells to fill the diluted check holes, but "
f"potentially {diluted_usage_upper_bound} are required."
)
# Helper functions.
@property
def vm_memory(self) -> MemoryDict:
return self.memory
def _to_pc(self, label_or_pc: Union[str, int]) -> int:
"""
If the input is a string, treat it as a label and converts it to a PC.
Otherwise, return it unchanged.
"""
if isinstance(label_or_pc, str):
assert isinstance(
self.program, Program
), "Label name cannot be used with a StrippedProgram."
return self.program.get_label(label_or_pc)
return label_or_pc
def load_data(
self, ptr: MaybeRelocatable, data: Sequence[MaybeRelocatable]
) -> MaybeRelocatable:
"""
Writes data into the memory at address ptr and returns the first address after the data.
"""
return self.segments.load_data(ptr, data)
def gen_arg(self, arg, apply_modulo_to_args=True):
"""
Converts args to Cairo-friendly ones.
If an argument is Iterable it is replaced by a pointer to a new segment containing the items
in the Iterable arg (recursively).
If apply_modulo_to_args=True, all the integers are taken modulo the program's prime.
"""
return self.segments.gen_arg(arg=arg, apply_modulo_to_args=apply_modulo_to_args)
def relocate_value(self, value: MaybeRelocatable) -> int:
assert self.segment_offsets is not None, "segment_offsets is not initialized."
relocated = relocate_value(
value=value, segment_offsets=self.segment_offsets, prime=self.program.prime
)
assert isinstance(relocated, int)
return relocated
def get_segment_offsets(self) -> Dict[int, int]:
assert self.segment_offsets is not None, "segment_offsets is not initialized."
return self.segment_offsets
def relocate(self):
self.segment_offsets = self.segments.relocate_segments()
initializer: Mapping[MaybeRelocatable, MaybeRelocatable] = {
self.relocate_value(addr): self.relocate_value(value)
for addr, value in self.vm_memory.items()
}
self.relocated_memory = MemoryDict(initializer)
self.relocated_trace = relocate_trace(
self.vm.trace, self.segment_offsets, self.program.prime
)
for builtin_runner in self.builtin_runners.values():
builtin_runner.relocate(self.relocate_value)
def get_relocated_debug_info(self):
return DebugInfo(
instruction_locations={
self.relocate_value(addr): location_info
for addr, location_info in self.vm.instruction_debug_info.items()
},
file_contents=self.vm.debug_file_contents,
)
def get_memory_segment_addresses(self) -> Dict[str, MemorySegmentAddresses]:
def get_segment_addresses(
name: str, segment_addresses: MemorySegmentRelocatableAddresses
) -> MemorySegmentAddresses:
stop_ptr = (
segment_addresses.stop_ptr
if name in self.program.builtins
else segment_addresses.begin_addr
)
assert stop_ptr is not None, f"The {name} builtin stop pointer was not set."
return MemorySegmentAddresses(
begin_addr=self.relocate_value(segment_addresses.begin_addr),
stop_ptr=self.relocate_value(stop_ptr),
)
return {
name: get_segment_addresses(name, segment_addresses)
for builtin_runner in self.builtin_runners.values()
for name, segment_addresses in builtin_runner.get_memory_segment_addresses(self).items()
}
def print_memory(self, relocated: bool):
print("Addr Value")
print("-----------")
old_addr = -1
memory = self.relocated_memory if relocated else self.vm_memory
for addr in sorted(memory.keys()):
val = memory[addr]
if addr != old_addr + 1:
print("\u22ee")
if isinstance(val, int):
val = to_field_element(val=val, prime=self.program.prime)
print(f"{addr:<5} {val}")
old_addr = addr
print()
def print_output(self, output_callback=to_field_element):
if "output_builtin" not in self.builtin_runners:
return
output_runner = self.builtin_runners["output_builtin"]
assert isinstance(output_runner, OutputBuiltinRunner)
print("Program output:")
_, size = output_runner.get_used_cells_and_allocated_size(self)
for i in range(size):
val = self.vm_memory.get(output_runner.base + i)
if val is not None:
print(f" {output_callback(val=val, prime=self.program.prime)}")
else:
print(" <missing>")
print()
def print_info(self, relocated: bool):
print(self.get_info(relocated=relocated))
def get_info(self, relocated: bool) -> str:
pc, ap, fp = self.vm.run_context.pc, self.vm.run_context.ap, self.vm.run_context.fp
if relocated:
pc = self.relocate_value(pc)
ap = self.relocate_value(ap)
fp = self.relocate_value(fp)
info = f"""\
Number of steps: {len(self.vm.trace)} {
'' if self.original_steps is None else f'(originally, {self.original_steps})'}
Used memory cells: {len(self.vm_memory)}
Register values after execution:
pc = {pc}
ap = {ap}
fp = {fp}
"""
return info
def print_segment_relocation_table(self):
if self.segment_offsets is not None:
print("Segment relocation table:")
for segment_index in range(self.segments.n_segments):
print(f"{segment_index:<5} {self.segment_offsets[segment_index]}")
def get_builtin_usage(self) -> str:
if len(self.builtin_runners) == 0:
return ""
builtin_usage_str = "\nBuiltin usage:\n"
for name, builtin_runner in self.builtin_runners.items():
used, size = builtin_runner.get_used_cells_and_allocated_size(self)
percentage = f"{used / size * 100:.2f}%" if size > 0 else "100%"
builtin_usage_str += f"{name:<30s} {percentage:>7s} (used {used} cells)\n"
return builtin_usage_str
def print_builtin_usage(self):
print(self.get_builtin_usage())
def get_builtin_segments_info(self):
builtin_segments: Dict[str, SegmentInfo] = {}
for builtin in self.builtin_runners.values():
for name, segment_addresses in builtin.get_memory_segment_addresses(self).items():
begin_addr = segment_addresses.begin_addr
assert isinstance(
begin_addr, RelocatableValue
), f"{name} segment begin_addr is not a RelocatableValue {begin_addr}."
assert (
begin_addr.offset == 0
), f"Unexpected {name} segment begin_addr {begin_addr.offset}."
assert segment_addresses.stop_ptr is not None, f"{name} segment stop ptr is None."
segment_index = begin_addr.segment_index
segment_size = segment_addresses.stop_ptr - begin_addr
assert isinstance(segment_size, int)
assert name not in builtin_segments, f"Builtin segment name collision: {name}."
builtin_segments[name] = SegmentInfo(index=segment_index, size=segment_size)
return builtin_segments
def get_execution_resources(self) -> ExecutionResources:
n_steps = len(self.vm.trace) if self.original_steps is None else self.original_steps
n_memory_holes = self.get_memory_holes()
builtin_instance_counter = {
builtin_name: builtin_runner.get_used_instances(self)
for builtin_name, builtin_runner in self.builtin_runners.items()
}
return ExecutionResources(
n_steps=n_steps,
n_memory_holes=n_memory_holes,
builtin_instance_counter=builtin_instance_counter,
)
def get_cairo_pie(self) -> CairoPie:
"""
Constructs and returns a CairoPie representing the current VM run.
"""
builtin_segments = self.get_builtin_segments_info()
known_segment_indices = WriteOnceDict()
for segment_info in builtin_segments.values():
known_segment_indices[segment_info.index] = None
# Note that n_used_builtins might be smaller then len(builtin_segments).
n_used_builtins = len(self.program.builtins)
ret_fp, ret_pc = (
self.vm_memory[self.execution_base + n_used_builtins + i] for i in range(2)
)
assert isinstance(ret_fp, RelocatableValue), f"Expecting a relocatable value got {ret_fp}."
assert isinstance(ret_pc, RelocatableValue), f"Expecting a relocatable value got {ret_pc}."
assert self.segments.get_segment_size(ret_fp.segment_index) == 0, (
"Unexpected ret_fp_segment size "
f"{self.segments.get_segment_size(ret_fp.segment_index)}"
)
assert self.segments.get_segment_size(ret_pc.segment_index) == 0, (
"Unexpected ret_pc_segment size "
f"{self.segments.get_segment_size(ret_pc.segment_index)}"
)
for addr in self.program_base, self.execution_base, ret_fp, ret_pc:
assert addr.offset == 0, "Expecting a 0 offset."
known_segment_indices[addr.segment_index] = None
# Put all the remaining segments in extra_segments.
extra_segments = [
SegmentInfo(index=index, size=self.segments.get_segment_size(index))
for index in range(self.segments.n_segments)
if index not in known_segment_indices
]
execution_size = self.vm.run_context.ap - self.execution_base
cairo_pie_metadata = CairoPieMetadata(
program=self.program.stripped(),
program_segment=SegmentInfo(
index=self.program_base.segment_index, size=len(self.program.data)
),
execution_segment=SegmentInfo(
index=self.execution_base.segment_index, size=execution_size
),
ret_fp_segment=SegmentInfo(ret_fp.segment_index, size=0),
ret_pc_segment=SegmentInfo(ret_pc.segment_index, size=0),
builtin_segments=builtin_segments,
extra_segments=extra_segments,
)
execution_resources = self.get_execution_resources()
return CairoPie(
metadata=cairo_pie_metadata,
memory=self.vm.run_context.memory,
additional_data={
name: builtin.get_additional_data()
for name, builtin in self.builtin_runners.items()
},
execution_resources=execution_resources,
)
def get_runner_from_code(
code: Union[str, Sequence[Tuple[str, str]]], layout: str, prime: int
) -> CairoRunner:
"""
Given a code with some compile and run parameters (prime, layout, etc.), runs the code using
Cairo runner and returns the runner.
"""
program = compile_cairo(code=code, prime=prime, debug_info=True)
return get_main_runner(program=program, hint_locals={}, layout=layout)
def get_main_runner(program: Program, hint_locals: Dict[str, Any], layout: str):
"""
Runs a main-entrypoint program using Cairo runner and returns the runner.
"""
runner = CairoRunner(program, layout=layout)
runner.initialize_segments()
end = runner.initialize_main_entrypoint()
runner.initialize_vm(hint_locals=hint_locals)
runner.run_until_pc(end)
runner.end_run()
runner.read_return_values()
return runner