forked from nim-lang/Nim
-
Notifications
You must be signed in to change notification settings - Fork 2
/
alloc.nim
1101 lines (975 loc) · 37.7 KB
/
alloc.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Low level allocator for Nim. Has been designed to support the GC.
{.push profiler:off.}
include osalloc
template track(op, address, size) =
when defined(memTracker):
memTrackerOp(op, address, size)
# We manage *chunks* of memory. Each chunk is a multiple of the page size.
# Each chunk starts at an address that is divisible by the page size.
const
nimMinHeapPages {.intdefine.} = 128 # 0.5 MB
SmallChunkSize = PageSize
MaxFli = 30
MaxLog2Sli = 5 # 32, this cannot be increased without changing 'uint32'
# everywhere!
MaxSli = 1 shl MaxLog2Sli
FliOffset = 6
RealFli = MaxFli - FliOffset
# size of chunks in last matrix bin
MaxBigChunkSize = 1 shl MaxFli - 1 shl (MaxFli-MaxLog2Sli-1)
HugeChunkSize = MaxBigChunkSize + 1
type
PTrunk = ptr Trunk
Trunk = object
next: PTrunk # all nodes are connected with this pointer
key: int # start address at bit 0
bits: array[0..IntsPerTrunk-1, uint] # a bit vector
TrunkBuckets = array[0..255, PTrunk]
IntSet = object
data: TrunkBuckets
type
FreeCell {.final, pure.} = object
next: ptr FreeCell # next free cell in chunk (overlaid with refcount)
when not defined(gcDestructors):
zeroField: int # 0 means cell is not used (overlaid with typ field)
# 1 means cell is manually managed pointer
# otherwise a PNimType is stored in there
else:
alignment: int
PChunk = ptr BaseChunk
PBigChunk = ptr BigChunk
PSmallChunk = ptr SmallChunk
BaseChunk {.pure, inheritable.} = object
prevSize: int # size of previous chunk; for coalescing
# 0th bit == 1 if 'used
size: int # if < PageSize it is a small chunk
SmallChunk = object of BaseChunk
next, prev: PSmallChunk # chunks of the same size
freeList: ptr FreeCell
free: int # how many bytes remain
acc: int # accumulator for small object allocation
when defined(nimAlignPragma):
data {.align: MemAlign.}: UncheckedArray[byte] # start of usable memory
else:
data: UncheckedArray[byte]
BigChunk = object of BaseChunk # not necessarily > PageSize!
next, prev: PBigChunk # chunks of the same (or bigger) size
when defined(nimAlignPragma):
data {.align: MemAlign.}: UncheckedArray[byte] # start of usable memory
else:
data: UncheckedArray[byte]
template smallChunkOverhead(): untyped = sizeof(SmallChunk)
template bigChunkOverhead(): untyped = sizeof(BigChunk)
# ------------- chunk table ---------------------------------------------------
# We use a PtrSet of chunk starts and a table[Page, chunksize] for chunk
# endings of big chunks. This is needed by the merging operation. The only
# remaining operation is best-fit for big chunks. Since there is a size-limit
# for big chunks (because greater than the limit means they are returned back
# to the OS), a fixed size array can be used.
type
PLLChunk = ptr LLChunk
LLChunk = object ## *low-level* chunk
size: int # remaining size
acc: int # accumulator
next: PLLChunk # next low-level chunk; only needed for dealloc
PAvlNode = ptr AvlNode
AvlNode = object
link: array[0..1, PAvlNode] # Left (0) and right (1) links
key, upperBound: int
level: int
HeapLinks = object
len: int
chunks: array[30, (PBigChunk, int)]
next: ptr HeapLinks
MemRegion = object
when not defined(gcDestructors):
minLargeObj, maxLargeObj: int
freeSmallChunks: array[0..SmallChunkSize div MemAlign-1, PSmallChunk]
flBitmap: uint32
slBitmap: array[RealFli, uint32]
matrix: array[RealFli, array[MaxSli, PBigChunk]]
llmem: PLLChunk
currMem, maxMem, freeMem, occ: int # memory sizes (allocated from OS)
lastSize: int # needed for the case that OS gives us pages linearly
chunkStarts: IntSet
when not defined(gcDestructors):
root, deleted, last, freeAvlNodes: PAvlNode
locked, blockChunkSizeIncrease: bool # if locked, we cannot free pages.
nextChunkSize: int
when not defined(gcDestructors):
bottomData: AvlNode
heapLinks: HeapLinks
when defined(nimTypeNames):
allocCounter, deallocCounter: int
const
fsLookupTable: array[byte, int8] = [
-1'i8, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7
]
proc msbit(x: uint32): int {.inline.} =
let a = if x <= 0xff_ff'u32:
(if x <= 0xff: 0 else: 8)
else:
(if x <= 0xff_ff_ff'u32: 16 else: 24)
result = int(fsLookupTable[byte(x shr a)]) + a
proc lsbit(x: uint32): int {.inline.} =
msbit(x and ((not x) + 1))
proc setBit(nr: int; dest: var uint32) {.inline.} =
dest = dest or (1u32 shl (nr and 0x1f))
proc clearBit(nr: int; dest: var uint32) {.inline.} =
dest = dest and not (1u32 shl (nr and 0x1f))
proc mappingSearch(r, fl, sl: var int) {.inline.} =
#let t = (1 shl (msbit(uint32 r) - MaxLog2Sli)) - 1
# This diverges from the standard TLSF algorithm because we need to ensure
# PageSize alignment:
let t = roundup((1 shl (msbit(uint32 r) - MaxLog2Sli)), PageSize) - 1
r = r + t
r = r and not t
r = min(r, MaxBigChunkSize)
fl = msbit(uint32 r)
sl = (r shr (fl - MaxLog2Sli)) - MaxSli
dec fl, FliOffset
sysAssert((r and PageMask) == 0, "mappingSearch: still not aligned")
# See http://www.gii.upv.es/tlsf/files/papers/tlsf_desc.pdf for details of
# this algorithm.
proc mappingInsert(r: int): tuple[fl, sl: int] {.inline.} =
sysAssert((r and PageMask) == 0, "mappingInsert: still not aligned")
result.fl = msbit(uint32 r)
result.sl = (r shr (result.fl - MaxLog2Sli)) - MaxSli
dec result.fl, FliOffset
template mat(): untyped = a.matrix[fl][sl]
proc findSuitableBlock(a: MemRegion; fl, sl: var int): PBigChunk {.inline.} =
let tmp = a.slBitmap[fl] and (not 0u32 shl sl)
result = nil
if tmp != 0:
sl = lsbit(tmp)
result = mat()
else:
fl = lsbit(a.flBitmap and (not 0u32 shl (fl + 1)))
if fl > 0:
sl = lsbit(a.slBitmap[fl])
result = mat()
template clearBits(sl, fl) =
clearBit(sl, a.slBitmap[fl])
if a.slBitmap[fl] == 0u32:
# do not forget to cascade:
clearBit(fl, a.flBitmap)
proc removeChunkFromMatrix(a: var MemRegion; b: PBigChunk) =
let (fl, sl) = mappingInsert(b.size)
if b.next != nil: b.next.prev = b.prev
if b.prev != nil: b.prev.next = b.next
if mat() == b:
mat() = b.next
if mat() == nil:
clearBits(sl, fl)
b.prev = nil
b.next = nil
proc removeChunkFromMatrix2(a: var MemRegion; b: PBigChunk; fl, sl: int) =
mat() = b.next
if mat() != nil:
mat().prev = nil
else:
clearBits(sl, fl)
b.prev = nil
b.next = nil
proc addChunkToMatrix(a: var MemRegion; b: PBigChunk) =
let (fl, sl) = mappingInsert(b.size)
b.prev = nil
b.next = mat()
if mat() != nil:
mat().prev = b
mat() = b
setBit(sl, a.slBitmap[fl])
setBit(fl, a.flBitmap)
proc incCurrMem(a: var MemRegion, bytes: int) {.inline.} =
inc(a.currMem, bytes)
proc decCurrMem(a: var MemRegion, bytes: int) {.inline.} =
a.maxMem = max(a.maxMem, a.currMem)
dec(a.currMem, bytes)
proc getMaxMem(a: var MemRegion): int =
# Since we update maxPagesCount only when freeing pages,
# maxPagesCount may not be up to date. Thus we use the
# maximum of these both values here:
result = max(a.currMem, a.maxMem)
proc llAlloc(a: var MemRegion, size: int): pointer =
# *low-level* alloc for the memory managers data structures. Deallocation
# is done at the end of the allocator's life time.
if a.llmem == nil or size > a.llmem.size:
# the requested size is ``roundup(size+sizeof(LLChunk), PageSize)``, but
# since we know ``size`` is a (small) constant, we know the requested size
# is one page:
sysAssert roundup(size+sizeof(LLChunk), PageSize) == PageSize, "roundup 6"
var old = a.llmem # can be nil and is correct with nil
a.llmem = cast[PLLChunk](osAllocPages(PageSize))
when defined(nimAvlcorruption):
trackLocation(a.llmem, PageSize)
incCurrMem(a, PageSize)
a.llmem.size = PageSize - sizeof(LLChunk)
a.llmem.acc = sizeof(LLChunk)
a.llmem.next = old
result = cast[pointer](cast[ByteAddress](a.llmem) + a.llmem.acc)
dec(a.llmem.size, size)
inc(a.llmem.acc, size)
zeroMem(result, size)
when not defined(gcDestructors):
proc getBottom(a: var MemRegion): PAvlNode =
result = addr(a.bottomData)
if result.link[0] == nil:
result.link[0] = result
result.link[1] = result
proc allocAvlNode(a: var MemRegion, key, upperBound: int): PAvlNode =
if a.freeAvlNodes != nil:
result = a.freeAvlNodes
a.freeAvlNodes = a.freeAvlNodes.link[0]
else:
result = cast[PAvlNode](llAlloc(a, sizeof(AvlNode)))
when defined(nimAvlcorruption):
cprintf("tracking location: %p\n", result)
result.key = key
result.upperBound = upperBound
let bottom = getBottom(a)
result.link[0] = bottom
result.link[1] = bottom
result.level = 1
#when defined(nimAvlcorruption):
# track("allocAvlNode", result, sizeof(AvlNode))
sysAssert(bottom == addr(a.bottomData), "bottom data")
sysAssert(bottom.link[0] == bottom, "bottom link[0]")
sysAssert(bottom.link[1] == bottom, "bottom link[1]")
proc deallocAvlNode(a: var MemRegion, n: PAvlNode) {.inline.} =
n.link[0] = a.freeAvlNodes
a.freeAvlNodes = n
proc addHeapLink(a: var MemRegion; p: PBigChunk, size: int) =
var it = addr(a.heapLinks)
while it != nil and it.len >= it.chunks.len: it = it.next
if it == nil:
var n = cast[ptr HeapLinks](llAlloc(a, sizeof(HeapLinks)))
n.next = a.heapLinks.next
a.heapLinks.next = n
n.chunks[0] = (p, size)
n.len = 1
else:
let L = it.len
it.chunks[L] = (p, size)
inc it.len
when not defined(gcDestructors):
include "system/avltree"
proc llDeallocAll(a: var MemRegion) =
var it = a.llmem
while it != nil:
# we know each block in the list has the size of 1 page:
var next = it.next
osDeallocPages(it, PageSize)
it = next
a.llmem = nil
proc intSetGet(t: IntSet, key: int): PTrunk =
var it = t.data[key and high(t.data)]
while it != nil:
if it.key == key: return it
it = it.next
result = nil
proc intSetPut(a: var MemRegion, t: var IntSet, key: int): PTrunk =
result = intSetGet(t, key)
if result == nil:
result = cast[PTrunk](llAlloc(a, sizeof(result[])))
result.next = t.data[key and high(t.data)]
t.data[key and high(t.data)] = result
result.key = key
proc contains(s: IntSet, key: int): bool =
var t = intSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
result = (t.bits[u shr IntShift] and (uint(1) shl (u and IntMask))) != 0
else:
result = false
proc incl(a: var MemRegion, s: var IntSet, key: int) =
var t = intSetPut(a, s, key shr TrunkShift)
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] or (uint(1) shl (u and IntMask))
proc excl(s: var IntSet, key: int) =
var t = intSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] and not
(uint(1) shl (u and IntMask))
iterator elements(t: IntSet): int {.inline.} =
# while traversing it is forbidden to change the set!
for h in 0..high(t.data):
var r = t.data[h]
while r != nil:
var i = 0
while i <= high(r.bits):
var w = r.bits[i] # taking a copy of r.bits[i] here is correct, because
# modifying operations are not allowed during traversation
var j = 0
while w != 0: # test all remaining bits for zero
if (w and 1) != 0: # the bit is set!
yield (r.key shl TrunkShift) or (i shl IntShift +% j)
inc(j)
w = w shr 1
inc(i)
r = r.next
proc isSmallChunk(c: PChunk): bool {.inline.} =
result = c.size <= SmallChunkSize-smallChunkOverhead()
proc chunkUnused(c: PChunk): bool {.inline.} =
result = (c.prevSize and 1) == 0
iterator allObjects(m: var MemRegion): pointer {.inline.} =
m.locked = true
for s in elements(m.chunkStarts):
# we need to check here again as it could have been modified:
if s in m.chunkStarts:
let c = cast[PChunk](s shl PageShift)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
let size = c.size
var a = cast[ByteAddress](addr(c.data))
let limit = a + c.acc
while a <% limit:
yield cast[pointer](a)
a = a +% size
else:
let c = cast[PBigChunk](c)
yield addr(c.data)
m.locked = false
proc iterToProc*(iter: typed, envType: typedesc; procName: untyped) {.
magic: "Plugin", compileTime.}
when not defined(gcDestructors):
proc isCell(p: pointer): bool {.inline.} =
result = cast[ptr FreeCell](p).zeroField >% 1
# ------------- chunk management ----------------------------------------------
proc pageIndex(c: PChunk): int {.inline.} =
result = cast[ByteAddress](c) shr PageShift
proc pageIndex(p: pointer): int {.inline.} =
result = cast[ByteAddress](p) shr PageShift
proc pageAddr(p: pointer): PChunk {.inline.} =
result = cast[PChunk](cast[ByteAddress](p) and not PageMask)
#sysAssert(Contains(allocator.chunkStarts, pageIndex(result)))
when false:
proc writeFreeList(a: MemRegion) =
var it = a.freeChunksList
c_fprintf(stdout, "freeChunksList: %p\n", it)
while it != nil:
c_fprintf(stdout, "it: %p, next: %p, prev: %p, size: %ld\n",
it, it.next, it.prev, it.size)
it = it.next
const nimMaxHeap {.intdefine.} = 0
proc requestOsChunks(a: var MemRegion, size: int): PBigChunk =
when not defined(emscripten):
if not a.blockChunkSizeIncrease:
let usedMem = a.occ #a.currMem # - a.freeMem
when nimMaxHeap != 0:
if usedMem > nimMaxHeap * 1024 * 1024:
raiseOutOfMem()
if usedMem < 64 * 1024:
a.nextChunkSize = PageSize*4
else:
a.nextChunkSize = min(roundup(usedMem shr 2, PageSize), a.nextChunkSize * 2)
a.nextChunkSize = min(a.nextChunkSize, MaxBigChunkSize)
var size = size
if size > a.nextChunkSize:
result = cast[PBigChunk](osAllocPages(size))
else:
result = cast[PBigChunk](osTryAllocPages(a.nextChunkSize))
if result == nil:
result = cast[PBigChunk](osAllocPages(size))
a.blockChunkSizeIncrease = true
else:
size = a.nextChunkSize
incCurrMem(a, size)
inc(a.freeMem, size)
a.addHeapLink(result, size)
when defined(debugHeapLinks):
cprintf("owner: %p; result: %p; next pointer %p; size: %ld\n", addr(a),
result, result.heapLink, result.size)
when defined(memtracker):
trackLocation(addr result.size, sizeof(int))
sysAssert((cast[ByteAddress](result) and PageMask) == 0, "requestOsChunks 1")
#zeroMem(result, size)
result.next = nil
result.prev = nil
result.size = size
# update next.prevSize:
var nxt = cast[ByteAddress](result) +% size
sysAssert((nxt and PageMask) == 0, "requestOsChunks 2")
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
#echo("Next already allocated!")
next.prevSize = size or (next.prevSize and 1)
# set result.prevSize:
var lastSize = if a.lastSize != 0: a.lastSize else: PageSize
var prv = cast[ByteAddress](result) -% lastSize
sysAssert((nxt and PageMask) == 0, "requestOsChunks 3")
var prev = cast[PChunk](prv)
if pageIndex(prev) in a.chunkStarts and prev.size == lastSize:
#echo("Prev already allocated!")
result.prevSize = lastSize or (result.prevSize and 1)
else:
result.prevSize = 0 or (result.prevSize and 1) # unknown
# but do not overwrite 'used' field
a.lastSize = size # for next request
sysAssert((cast[int](result) and PageMask) == 0, "requestOschunks: unaligned chunk")
proc isAccessible(a: MemRegion, p: pointer): bool {.inline.} =
result = contains(a.chunkStarts, pageIndex(p))
proc contains[T](list, x: T): bool =
var it = list
while it != nil:
if it == x: return true
it = it.next
proc listAdd[T](head: var T, c: T) {.inline.} =
sysAssert(c notin head, "listAdd 1")
sysAssert c.prev == nil, "listAdd 2"
sysAssert c.next == nil, "listAdd 3"
c.next = head
if head != nil:
sysAssert head.prev == nil, "listAdd 4"
head.prev = c
head = c
proc listRemove[T](head: var T, c: T) {.inline.} =
sysAssert(c in head, "listRemove")
if c == head:
head = c.next
sysAssert c.prev == nil, "listRemove 2"
if head != nil: head.prev = nil
else:
sysAssert c.prev != nil, "listRemove 3"
c.prev.next = c.next
if c.next != nil: c.next.prev = c.prev
c.next = nil
c.prev = nil
proc updatePrevSize(a: var MemRegion, c: PBigChunk,
prevSize: int) {.inline.} =
var ri = cast[PChunk](cast[ByteAddress](c) +% c.size)
sysAssert((cast[ByteAddress](ri) and PageMask) == 0, "updatePrevSize")
if isAccessible(a, ri):
ri.prevSize = prevSize or (ri.prevSize and 1)
proc splitChunk2(a: var MemRegion, c: PBigChunk, size: int): PBigChunk =
result = cast[PBigChunk](cast[ByteAddress](c) +% size)
result.size = c.size - size
track("result.size", addr result.size, sizeof(int))
# XXX check if these two nil assignments are dead code given
# addChunkToMatrix's implementation:
result.next = nil
result.prev = nil
# size and not used:
result.prevSize = size
sysAssert((size and 1) == 0, "splitChunk 2")
sysAssert((size and PageMask) == 0,
"splitChunk: size is not a multiple of the PageSize")
updatePrevSize(a, c, result.size)
c.size = size
incl(a, a.chunkStarts, pageIndex(result))
proc splitChunk(a: var MemRegion, c: PBigChunk, size: int) =
let rest = splitChunk2(a, c, size)
addChunkToMatrix(a, rest)
proc freeBigChunk(a: var MemRegion, c: PBigChunk) =
var c = c
sysAssert(c.size >= PageSize, "freeBigChunk")
inc(a.freeMem, c.size)
c.prevSize = c.prevSize and not 1 # set 'used' to false
when coalescLeft:
let prevSize = c.prevSize
if prevSize != 0:
var le = cast[PChunk](cast[ByteAddress](c) -% prevSize)
sysAssert((cast[ByteAddress](le) and PageMask) == 0, "freeBigChunk 4")
if isAccessible(a, le) and chunkUnused(le):
sysAssert(not isSmallChunk(le), "freeBigChunk 5")
if not isSmallChunk(le) and le.size < MaxBigChunkSize:
removeChunkFromMatrix(a, cast[PBigChunk](le))
inc(le.size, c.size)
excl(a.chunkStarts, pageIndex(c))
c = cast[PBigChunk](le)
if c.size > MaxBigChunkSize:
let rest = splitChunk2(a, c, MaxBigChunkSize)
addChunkToMatrix(a, c)
c = rest
when coalescRight:
var ri = cast[PChunk](cast[ByteAddress](c) +% c.size)
sysAssert((cast[ByteAddress](ri) and PageMask) == 0, "freeBigChunk 2")
if isAccessible(a, ri) and chunkUnused(ri):
sysAssert(not isSmallChunk(ri), "freeBigChunk 3")
if not isSmallChunk(ri) and c.size < MaxBigChunkSize:
removeChunkFromMatrix(a, cast[PBigChunk](ri))
inc(c.size, ri.size)
excl(a.chunkStarts, pageIndex(ri))
if c.size > MaxBigChunkSize:
let rest = splitChunk2(a, c, MaxBigChunkSize)
addChunkToMatrix(a, rest)
addChunkToMatrix(a, c)
proc getBigChunk(a: var MemRegion, size: int): PBigChunk =
sysAssert(size > 0, "getBigChunk 2")
var size = size # roundup(size, PageSize)
var fl = 0
var sl = 0
mappingSearch(size, fl, sl)
sysAssert((size and PageMask) == 0, "getBigChunk: unaligned chunk")
result = findSuitableBlock(a, fl, sl)
if result == nil:
if size < nimMinHeapPages * PageSize:
result = requestOsChunks(a, nimMinHeapPages * PageSize)
splitChunk(a, result, size)
else:
result = requestOsChunks(a, size)
# if we over allocated split the chunk:
if result.size > size:
splitChunk(a, result, size)
else:
removeChunkFromMatrix2(a, result, fl, sl)
if result.size >= size + PageSize:
splitChunk(a, result, size)
# set 'used' to to true:
result.prevSize = 1
track("setUsedToFalse", addr result.size, sizeof(int))
incl(a, a.chunkStarts, pageIndex(result))
dec(a.freeMem, size)
proc getHugeChunk(a: var MemRegion; size: int): PBigChunk =
result = cast[PBigChunk](osAllocPages(size))
incCurrMem(a, size)
# XXX add this to the heap links. But also remove it from it later.
when false: a.addHeapLink(result, size)
sysAssert((cast[ByteAddress](result) and PageMask) == 0, "getHugeChunk")
result.next = nil
result.prev = nil
result.size = size
# set 'used' to to true:
result.prevSize = 1
incl(a, a.chunkStarts, pageIndex(result))
proc freeHugeChunk(a: var MemRegion; c: PBigChunk) =
let size = c.size
sysAssert(size >= HugeChunkSize, "freeHugeChunk: invalid size")
excl(a.chunkStarts, pageIndex(c))
decCurrMem(a, size)
osDeallocPages(c, size)
proc getSmallChunk(a: var MemRegion): PSmallChunk =
var res = getBigChunk(a, PageSize)
sysAssert res.prev == nil, "getSmallChunk 1"
sysAssert res.next == nil, "getSmallChunk 2"
result = cast[PSmallChunk](res)
# -----------------------------------------------------------------------------
when not defined(gcDestructors):
proc isAllocatedPtr(a: MemRegion, p: pointer): bool {.benign.}
when true:
template allocInv(a: MemRegion): bool = true
else:
proc allocInv(a: MemRegion): bool =
## checks some (not all yet) invariants of the allocator's data structures.
for s in low(a.freeSmallChunks)..high(a.freeSmallChunks):
var c = a.freeSmallChunks[s]
while not (c == nil):
if c.next == c:
echo "[SYSASSERT] c.next == c"
return false
if not (c.size == s * MemAlign):
echo "[SYSASSERT] c.size != s * MemAlign"
return false
var it = c.freeList
while not (it == nil):
if not (it.zeroField == 0):
echo "[SYSASSERT] it.zeroField != 0"
c_printf("%ld %p\n", it.zeroField, it)
return false
it = it.next
c = c.next
result = true
when false:
var
rsizes: array[50_000, int]
rsizesLen: int
proc trackSize(size: int) =
rsizes[rsizesLen] = size
inc rsizesLen
proc untrackSize(size: int) =
for i in 0 .. rsizesLen-1:
if rsizes[i] == size:
rsizes[i] = rsizes[rsizesLen-1]
dec rsizesLen
return
c_fprintf(stdout, "%ld\n", size)
sysAssert(false, "untracked size!")
else:
template trackSize(x) = discard
template untrackSize(x) = discard
proc rawAlloc(a: var MemRegion, requestedSize: int): pointer =
when defined(nimTypeNames):
inc(a.allocCounter)
sysAssert(allocInv(a), "rawAlloc: begin")
sysAssert(roundup(65, 8) == 72, "rawAlloc: roundup broken")
var size = roundup(requestedSize, MemAlign)
sysAssert(size >= sizeof(FreeCell), "rawAlloc: requested size too small")
sysAssert(size >= requestedSize, "insufficient allocated size!")
#c_fprintf(stdout, "alloc; size: %ld; %ld\n", requestedSize, size)
if size <= SmallChunkSize-smallChunkOverhead():
# allocate a small block: for small chunks, we use only its next pointer
var s = size div MemAlign
var c = a.freeSmallChunks[s]
if c == nil:
c = getSmallChunk(a)
c.freeList = nil
sysAssert c.size == PageSize, "rawAlloc 3"
c.size = size
c.acc = size
c.free = SmallChunkSize - smallChunkOverhead() - size
c.next = nil
c.prev = nil
listAdd(a.freeSmallChunks[s], c)
result = addr(c.data)
sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 4")
else:
sysAssert(allocInv(a), "rawAlloc: begin c != nil")
sysAssert c.next != c, "rawAlloc 5"
#if c.size != size:
# c_fprintf(stdout, "csize: %lld; size %lld\n", c.size, size)
sysAssert c.size == size, "rawAlloc 6"
if c.freeList == nil:
sysAssert(c.acc + smallChunkOverhead() + size <= SmallChunkSize,
"rawAlloc 7")
result = cast[pointer](cast[ByteAddress](addr(c.data)) +% c.acc)
inc(c.acc, size)
else:
result = c.freeList
when not defined(gcDestructors):
sysAssert(c.freeList.zeroField == 0, "rawAlloc 8")
c.freeList = c.freeList.next
dec(c.free, size)
sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 9")
sysAssert(allocInv(a), "rawAlloc: end c != nil")
sysAssert(allocInv(a), "rawAlloc: before c.free < size")
if c.free < size:
sysAssert(allocInv(a), "rawAlloc: before listRemove test")
listRemove(a.freeSmallChunks[s], c)
sysAssert(allocInv(a), "rawAlloc: end listRemove test")
sysAssert(((cast[ByteAddress](result) and PageMask) - smallChunkOverhead()) %%
size == 0, "rawAlloc 21")
sysAssert(allocInv(a), "rawAlloc: end small size")
inc a.occ, size
trackSize(c.size)
else:
size = requestedSize + bigChunkOverhead() # roundup(requestedSize+bigChunkOverhead(), PageSize)
# allocate a large block
var c = if size >= HugeChunkSize: getHugeChunk(a, size)
else: getBigChunk(a, size)
sysAssert c.prev == nil, "rawAlloc 10"
sysAssert c.next == nil, "rawAlloc 11"
result = addr(c.data)
sysAssert((cast[ByteAddress](c) and (MemAlign-1)) == 0, "rawAlloc 13")
sysAssert((cast[ByteAddress](c) and PageMask) == 0, "rawAlloc: Not aligned on a page boundary")
when not defined(gcDestructors):
if a.root == nil: a.root = getBottom(a)
add(a, a.root, cast[ByteAddress](result), cast[ByteAddress](result)+%size)
inc a.occ, c.size
trackSize(c.size)
sysAssert(isAccessible(a, result), "rawAlloc 14")
sysAssert(allocInv(a), "rawAlloc: end")
when logAlloc: cprintf("var pointer_%p = alloc(%ld)\n", result, requestedSize)
proc rawAlloc0(a: var MemRegion, requestedSize: int): pointer =
result = rawAlloc(a, requestedSize)
zeroMem(result, requestedSize)
proc rawDealloc(a: var MemRegion, p: pointer) =
when defined(nimTypeNames):
inc(a.deallocCounter)
#sysAssert(isAllocatedPtr(a, p), "rawDealloc: no allocated pointer")
sysAssert(allocInv(a), "rawDealloc: begin")
var c = pageAddr(p)
if isSmallChunk(c):
# `p` is within a small chunk:
var c = cast[PSmallChunk](c)
var s = c.size
dec a.occ, s
untrackSize(s)
sysAssert a.occ >= 0, "rawDealloc: negative occupied memory (case A)"
sysAssert(((cast[ByteAddress](p) and PageMask) - smallChunkOverhead()) %%
s == 0, "rawDealloc 3")
var f = cast[ptr FreeCell](p)
when not defined(gcDestructors):
#echo("setting to nil: ", $cast[ByteAddress](addr(f.zeroField)))
sysAssert(f.zeroField != 0, "rawDealloc 1")
f.zeroField = 0
f.next = c.freeList
c.freeList = f
when overwriteFree:
# set to 0xff to check for usage after free bugs:
nimSetMem(cast[pointer](cast[int](p) +% sizeof(FreeCell)), -1'i32,
s -% sizeof(FreeCell))
# check if it is not in the freeSmallChunks[s] list:
if c.free < s:
# add it to the freeSmallChunks[s] array:
listAdd(a.freeSmallChunks[s div MemAlign], c)
inc(c.free, s)
else:
inc(c.free, s)
if c.free == SmallChunkSize-smallChunkOverhead():
listRemove(a.freeSmallChunks[s div MemAlign], c)
c.size = SmallChunkSize
freeBigChunk(a, cast[PBigChunk](c))
sysAssert(((cast[ByteAddress](p) and PageMask) - smallChunkOverhead()) %%
s == 0, "rawDealloc 2")
else:
# set to 0xff to check for usage after free bugs:
when overwriteFree: nimSetMem(p, -1'i32, c.size -% bigChunkOverhead())
# free big chunk
var c = cast[PBigChunk](c)
dec a.occ, c.size
untrackSize(c.size)
sysAssert a.occ >= 0, "rawDealloc: negative occupied memory (case B)"
when not defined(gcDestructors):
a.deleted = getBottom(a)
del(a, a.root, cast[int](addr(c.data)))
if c.size >= HugeChunkSize: freeHugeChunk(a, c)
else: freeBigChunk(a, c)
sysAssert(allocInv(a), "rawDealloc: end")
when logAlloc: cprintf("dealloc(pointer_%p)\n", p)
when not defined(gcDestructors):
proc isAllocatedPtr(a: MemRegion, p: pointer): bool =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[ByteAddress](p) and (PageSize-1)) -%
smallChunkOverhead()
result = (c.acc >% offset) and (offset %% c.size == 0) and
(cast[ptr FreeCell](p).zeroField >% 1)
else:
var c = cast[PBigChunk](c)
result = p == addr(c.data) and cast[ptr FreeCell](p).zeroField >% 1
proc prepareForInteriorPointerChecking(a: var MemRegion) {.inline.} =
a.minLargeObj = lowGauge(a.root)
a.maxLargeObj = highGauge(a.root)
proc interiorAllocatedPtr(a: MemRegion, p: pointer): pointer =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[ByteAddress](p) and (PageSize-1)) -%
smallChunkOverhead()
if c.acc >% offset:
sysAssert(cast[ByteAddress](addr(c.data)) +% offset ==
cast[ByteAddress](p), "offset is not what you think it is")
var d = cast[ptr FreeCell](cast[ByteAddress](addr(c.data)) +%
offset -% (offset %% c.size))
if d.zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var c = cast[PBigChunk](c)
var d = addr(c.data)
if p >= d and cast[ptr FreeCell](d).zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var q = cast[int](p)
if q >=% a.minLargeObj and q <=% a.maxLargeObj:
# this check is highly effective! Test fails for 99,96% of all checks on
# an x86-64.
var avlNode = inRange(a.root, q)
if avlNode != nil:
var k = cast[pointer](avlNode.key)
var c = cast[PBigChunk](pageAddr(k))
sysAssert(addr(c.data) == k, " k is not the same as addr(c.data)!")
if cast[ptr FreeCell](k).zeroField >% 1:
result = k
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
proc ptrSize(p: pointer): int =
when not defined(gcDestructors):
var x = cast[pointer](cast[ByteAddress](p) -% sizeof(FreeCell))
var c = pageAddr(p)
sysAssert(not chunkUnused(c), "ptrSize")
result = c.size -% sizeof(FreeCell)
if not isSmallChunk(c):
dec result, bigChunkOverhead()
else:
var c = pageAddr(p)
sysAssert(not chunkUnused(c), "ptrSize")
result = c.size
if not isSmallChunk(c):
dec result, bigChunkOverhead()
proc alloc(allocator: var MemRegion, size: Natural): pointer {.gcsafe.} =
when not defined(gcDestructors):
result = rawAlloc(allocator, size+sizeof(FreeCell))
cast[ptr FreeCell](result).zeroField = 1 # mark it as used
sysAssert(not isAllocatedPtr(allocator, result), "alloc")
result = cast[pointer](cast[ByteAddress](result) +% sizeof(FreeCell))
track("alloc", result, size)
else:
result = rawAlloc(allocator, size)
proc alloc0(allocator: var MemRegion, size: Natural): pointer =
result = alloc(allocator, size)
zeroMem(result, size)
proc dealloc(allocator: var MemRegion, p: pointer) =
when not defined(gcDestructors):
sysAssert(p != nil, "dealloc: p is nil")
var x = cast[pointer](cast[ByteAddress](p) -% sizeof(FreeCell))
sysAssert(x != nil, "dealloc: x is nil")
sysAssert(isAccessible(allocator, x), "is not accessible")
sysAssert(cast[ptr FreeCell](x).zeroField == 1, "dealloc: object header corrupted")
rawDealloc(allocator, x)
sysAssert(not isAllocatedPtr(allocator, x), "dealloc: object still accessible")
track("dealloc", p, 0)
else:
rawDealloc(allocator, p)
proc realloc(allocator: var MemRegion, p: pointer, newsize: Natural): pointer =
if newsize > 0:
result = alloc(allocator, newsize)
if p != nil:
copyMem(result, p, min(ptrSize(p), newsize))
dealloc(allocator, p)
elif p != nil:
dealloc(allocator, p)
proc realloc0(allocator: var MemRegion, p: pointer, oldsize, newsize: Natural): pointer =
result = realloc(allocator, p, newsize)
if newsize > oldsize:
zeroMem(cast[pointer](cast[uint](result) + uint(oldsize)), newsize - oldsize)
proc deallocOsPages(a: var MemRegion) =
# we free every 'ordinarily' allocated page by iterating over the page bits:
var it = addr(a.heapLinks)
while true:
let next = it.next
for i in 0..it.len-1:
let (p, size) = it.chunks[i]
when defined(debugHeapLinks):
cprintf("owner %p; dealloc A: %p size: %ld; next: %p\n", addr(a),
it, it.size, next)
sysAssert size >= PageSize, "origSize too small"
osDeallocPages(p, size)
it = next
if it == nil: break
# And then we free the pages that are in use for the page bits:
llDeallocAll(a)
proc getFreeMem(a: MemRegion): int {.inline.} = result = a.freeMem
proc getTotalMem(a: MemRegion): int {.inline.} = result = a.currMem
proc getOccupiedMem(a: MemRegion): int {.inline.} =
result = a.occ
# a.currMem - a.freeMem
when defined(nimTypeNames):
proc getMemCounters(a: MemRegion): (int, int) {.inline.} =
(a.allocCounter, a.deallocCounter)
# ---------------------- thread memory region -------------------------------
template instantiateForRegion(allocator: untyped) {.dirty.} =
{.push stackTrace: off.}
when defined(nimFulldebug):
proc interiorAllocatedPtr*(p: pointer): pointer =
result = interiorAllocatedPtr(allocator, p)
proc isAllocatedPtr*(p: pointer): bool =
let p = cast[pointer](cast[ByteAddress](p)-%ByteAddress(sizeof(Cell)))
result = isAllocatedPtr(allocator, p)
proc deallocOsPages = deallocOsPages(allocator)
proc allocImpl(size: Natural): pointer =
result = alloc(allocator, size)
proc alloc0Impl(size: Natural): pointer =
result = alloc0(allocator, size)
proc deallocImpl(p: pointer) =
dealloc(allocator, p)
proc reallocImpl(p: pointer, newSize: Natural): pointer =
result = realloc(allocator, p, newSize)
proc realloc0Impl(p: pointer, oldSize, newSize: Natural): pointer =
result = realloc(allocator, p, newSize)
if newSize > oldSize:
zeroMem(cast[pointer](cast[int](result) + oldSize), newSize - oldSize)
when false:
proc countFreeMem(): int =
# only used for assertions
var it = allocator.freeChunksList