About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Lognormal distribution constructor.
To use in Observable,
LogNormal = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-lognormal-ctor@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var LogNormal = require( 'path/to/vendor/umd/stats-base-dists-lognormal-ctor/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-lognormal-ctor@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.LogNormal;
})();
</script>
Returns a lognormal distribution object.
var lognormal = new LogNormal();
var mean = lognormal.mean;
// returns ~1.649
By default, mu = 0.0
and sigma = 1.0
. To create a distribution having a different mu
(location parameter) and sigma
(scale parameter), provide the corresponding arguments.
var lognormal = new LogNormal( 2.0, 4.0 );
var mu = lognormal.mean;
// returns ~22026.466
A lognormal distribution object has the following properties and methods...
Location parameter of the distribution.
var lognormal = new LogNormal();
var mu = lognormal.mu;
// returns 0.0
lognormal.mu = 3.0;
mu = lognormal.mu;
// returns 3.0
Scale parameter of the distribution. sigma
must be a positive number.
var lognormal = new LogNormal( 2.0, 4.0 );
var sigma = lognormal.sigma;
// returns 4.0
lognormal.sigma = 3.0;
sigma = lognormal.sigma;
// returns 3.0
Returns the differential entropy.
var lognormal = new LogNormal( 4.0, 12.0 );
var entropy = lognormal.entropy;
// returns ~7.904
Returns the excess kurtosis.
var lognormal = new LogNormal( 4.0, 12.0 );
var kurtosis = lognormal.kurtosis;
// returns 1.4243659274306933e+250
Returns the expected value.
var lognormal = new LogNormal( 4.0, 12.0 );
var mu = lognormal.mean;
// returns 1.0148003881138887e+33
Returns the median.
var lognormal = new LogNormal( 4.0, 12.0 );
var median = lognormal.median;
// returns ~54.598
Returns the mode.
var lognormal = new LogNormal( 4.0, 12.0 );
var mode = lognormal.mode;
// returns 1.580420060273613e-61
Returns the skewness.
var lognormal = new LogNormal( 4.0, 12.0 );
var skewness = lognormal.skewness;
// returns 6.421080152185613e+93
Returns the standard deviation.
var lognormal = new LogNormal( 4.0, 12.0 );
var s = lognormal.stdev;
// returns 1.886180808490652e+64
Returns the variance.
var lognormal = new LogNormal( 4.0, 12.0 );
var s2 = lognormal.variance;
// returns 3.55767804231845e+128
Evaluates the cumulative distribution function (CDF).
var lognormal = new LogNormal( 2.0, 4.0 );
var y = lognormal.cdf( 0.5 );
// returns ~0.25
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var lognormal = new LogNormal( 0.0, 1.0 );
var y = lognormal.logcdf( 2.0 );
// returns ~-0.2799
Evaluates the natural logarithm of the probability density function (PDF).
var lognormal = new LogNormal( 2.0, 4.0 );
var y = lognormal.logpdf( 2.0 );
// returns ~-3.052
Evaluates the probability density function (PDF).
var lognormal = new LogNormal( 2.0, 4.0 );
var y = lognormal.pdf( 2.0 );
// returns ~0.047
Evaluates the quantile function at probability p
.
var lognormal = new LogNormal( 2.0, 4.0 );
var y = lognormal.quantile( 0.5 );
// returns ~7.389
y = lognormal.quantile( 1.9 );
// returns NaN
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-lognormal-ctor@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var lognormal = new LogNormal( 2.0, 1.0 );
var mean = lognormal.mean;
// returns ~12.182
var median = lognormal.median;
// returns ~7.389
var s2 = lognormal.variance;
// returns ~255.016
var y = lognormal.cdf( 0.8 );
// returns ~0.013
})();
</script>
</body>
</html>
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.