About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Triangular distribution constructor.
To use in Observable,
Triangular = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-triangular-ctor@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var Triangular = require( 'path/to/vendor/umd/stats-base-dists-triangular-ctor/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-triangular-ctor@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.Triangular;
})();
</script>
Returns a triangular distribution object.
var triangular = new Triangular();
var mu = triangular.mean;
// returns 0.5
By default, a = 0.0
, b = 1.0
, and c = 0.5
. To create a distribution having a different a
(minimum support), b
(maximum support), and c
(mode), provide the corresponding arguments.
var triangular = new Triangular( 2.0, 4.0, 3.5 );
var mu = triangular.mean;
// returns ~3.167
An triangular distribution object has the following properties and methods...
Minimum support of the distribution. a
must be a number smaller than or equal to b
and c
.
var triangular = new Triangular();
var a = triangular.a;
// returns 0.0
triangular.a = 0.5;
a = triangular.a;
// returns 0.5
Maximum support of the distribution. b
must be a number larger than or equal to a
and c
.
var triangular = new Triangular( 2.0, 4.0, 2.5 );
var b = triangular.b;
// returns 4.0
triangular.b = 3.0;
b = triangular.b;
// returns 3.0
Mode of the distribution. c
must be a number larger than or equal to a
and smaller than or equal to b
.
var triangular = new Triangular( 2.0, 5.0, 4.0 );
var c = triangular.c;
// returns 4.0
triangular.c = 3.0;
c = triangular.c;
// returns 3.0
Returns the differential entropy.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var entropy = triangular.entropy;
// returns ~1.886
Returns the excess kurtosis.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var kurtosis = triangular.kurtosis;
// returns -0.6
Returns the expected value.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var mu = triangular.mean;
// returns ~8.667
Returns the median.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var median = triangular.median;
// returns ~8.899
Returns the mode.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var mode = triangular.mode;
// returns 10.0
Returns the skewness.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var skewness = triangular.skewness;
// returns ~-0.422
Returns the standard deviation.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var s = triangular.stdev;
// returns ~1.7
Returns the variance.
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var s2 = triangular.variance;
// returns ~2.889
Evaluates the cumulative distribution function (CDF).
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.cdf( 2.5 );
// returns 0.125
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.logcdf( 2.5 );
// returns ~-2.079
Evaluates the natural logarithm of the probability density function (PDF).
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.logpdf( 2.5 );
// returns ~-0.693
Evaluates the probability density function (PDF).
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.pdf( 2.5 );
// returns 0.5
Evaluates the quantile function at probability p
.
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.quantile( 0.5 );
// returns 3.0
y = triangular.quantile( 1.9 );
// returns NaN
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-triangular-ctor@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var mu = triangular.mean;
// returns 3.0
var median = triangular.median;
// returns 3.0
var s2 = triangular.variance;
// returns ~0.167
var y = triangular.cdf( 2.5 );
// returns 0.125
})();
</script>
</body>
</html>
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.