About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
The arithmetic mean is defined as
To use in Observable,
dsmeanwd = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dsmeanwd@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var dsmeanwd = require( 'path/to/vendor/umd/stats-base-dsmeanwd/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dsmeanwd@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.dsmeanwd;
})();
</script>
Computes the arithmetic mean of a single-precision floating-point strided array x
using Welford's algorithm with extended accumulation and returning an extended precision result.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var v = dsmeanwd( x.length, x, 1 );
// returns ~0.3333
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float32Array
. - strideX: stride length for
x
.
The N
and stride parameters determine which elements in x
are accessed at runtime. For example, to compute the arithmetic mean of every other element in x
,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var v = dsmeanwd( 4, x, 2 );
// returns 1.25
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array-float32' );
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dsmeanwd( 4, x1, 2 );
// returns 1.25
Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and alternative indexing semantics and returning an extended precision result.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var v = dsmeanwd.ndarray( x.length, x, 1, 0 );
// returns ~0.33333
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other value in x
starting from the second value
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = dsmeanwd.ndarray( 4, x, 2, 1 );
// returns 1.25
- If
N <= 0
, both functions returnNaN
. - Accumulated intermediate values are stored as double-precision floating-point numbers.
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-array-discrete-uniform@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dsmeanwd@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float32'
});
console.log( x );
var v = dsmeanwd( x.length, x, 1 );
console.log( v );
})();
</script>
</body>
</html>
#include "stdlib/stats/base/dsmeanwd.h"
Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
double v = stdlib_strided_dsmeanwd( 4, x, 2 );
// returns 4.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
.
double stdlib_strided_dsmeanwd( const CBLAS_INT N, const float *X, const CBLAS_INT strideX );
Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and alternative indexing semantics and returning an extended precision result.
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
double v = stdlib_strided_dsmeanwd_ndarray( 4, x, 2, 0 );
// returns 4.0
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
.
double stdlib_strided_dsmeanwd_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
#include "stdlib/stats/base/dsmeanwd.h"
#include <stdio.h>
int main( void ) {
// Create a strided array:
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
// Specify the number of elements:
const int N = 4;
// Specify the stride length:
const int strideX = 2;
// Compute the arithmetic mean:
double v = stdlib_strided_dsmeanwd( N, x, strideX );
// Print the result:
printf( "mean: %lf\n", v );
}
- Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 419–20. doi:10.1080/00401706.1962.10490022.
- van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 149–50. doi:10.1145/362929.362961.
@stdlib/stats-base/dmeanwd
: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.@stdlib/stats-base/dsmean
: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.@stdlib/stats-base/dsnanmeanwd
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using Welford's algorithm with extended accumulation, and returning an extended precision result.@stdlib/stats-base/meanwd
: calculate the arithmetic mean of a strided array using Welford's algorithm.@stdlib/stats-base/smeanwd
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.