forked from facebookresearch/InferSent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_nli.py
executable file
·299 lines (242 loc) · 10.8 KB
/
train_nli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import sys
import time
import argparse
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn as nn
from data import get_nli, get_batch, build_vocab
from mutils import get_optimizer
from models import NLINet
parser = argparse.ArgumentParser(description='NLI training')
# paths
parser.add_argument("--nlipath", type=str, default='dataset/SNLI/', help="NLI data path (SNLI or MultiNLI)")
parser.add_argument("--outputdir", type=str, default='savedir/', help="Output directory")
parser.add_argument("--outputmodelname", type=str, default='model.pickle')
parser.add_argument("--word_emb_path", type=str, default="dataset/GloVe/glove.840B.300d.txt", help="word embedding file path")
# training
parser.add_argument("--n_epochs", type=int, default=20)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--dpout_model", type=float, default=0., help="encoder dropout")
parser.add_argument("--dpout_fc", type=float, default=0., help="classifier dropout")
parser.add_argument("--nonlinear_fc", type=float, default=0, help="use nonlinearity in fc")
parser.add_argument("--optimizer", type=str, default="sgd,lr=0.1", help="adam or sgd,lr=0.1")
parser.add_argument("--lrshrink", type=float, default=5, help="shrink factor for sgd")
parser.add_argument("--decay", type=float, default=0.99, help="lr decay")
parser.add_argument("--minlr", type=float, default=1e-5, help="minimum lr")
parser.add_argument("--max_norm", type=float, default=5., help="max norm (grad clipping)")
# model
parser.add_argument("--encoder_type", type=str, default='InferSentV1', help="see list of encoders")
parser.add_argument("--enc_lstm_dim", type=int, default=2048, help="encoder nhid dimension")
parser.add_argument("--n_enc_layers", type=int, default=1, help="encoder num layers")
parser.add_argument("--fc_dim", type=int, default=512, help="nhid of fc layers")
parser.add_argument("--n_classes", type=int, default=3, help="entailment/neutral/contradiction")
parser.add_argument("--pool_type", type=str, default='max', help="max or mean")
# gpu
parser.add_argument("--gpu_id", type=int, default=3, help="GPU ID")
parser.add_argument("--seed", type=int, default=1234, help="seed")
# data
parser.add_argument("--word_emb_dim", type=int, default=300, help="word embedding dimension")
params, _ = parser.parse_known_args()
# set gpu device
torch.cuda.set_device(params.gpu_id)
# print parameters passed, and all parameters
print('\ntogrep : {0}\n'.format(sys.argv[1:]))
print(params)
"""
SEED
"""
np.random.seed(params.seed)
torch.manual_seed(params.seed)
torch.cuda.manual_seed(params.seed)
"""
DATA
"""
train, valid, test = get_nli(params.nlipath)
word_vec = build_vocab(train['s1'] + train['s2'] +
valid['s1'] + valid['s2'] +
test['s1'] + test['s2'], params.word_emb_path)
for split in ['s1', 's2']:
for data_type in ['train', 'valid', 'test']:
eval(data_type)[split] = np.array([['<s>'] +
[word for word in sent.split() if word in word_vec] +
['</s>'] for sent in eval(data_type)[split]])
"""
MODEL
"""
# model config
config_nli_model = {
'n_words' : len(word_vec) ,
'word_emb_dim' : params.word_emb_dim ,
'enc_lstm_dim' : params.enc_lstm_dim ,
'n_enc_layers' : params.n_enc_layers ,
'dpout_model' : params.dpout_model ,
'dpout_fc' : params.dpout_fc ,
'fc_dim' : params.fc_dim ,
'bsize' : params.batch_size ,
'n_classes' : params.n_classes ,
'pool_type' : params.pool_type ,
'nonlinear_fc' : params.nonlinear_fc ,
'encoder_type' : params.encoder_type ,
'use_cuda' : True ,
}
# model
encoder_types = ['InferSent', 'BLSTMprojEncoder', 'BGRUlastEncoder',
'InnerAttentionMILAEncoder', 'InnerAttentionYANGEncoder',
'InnerAttentionNAACLEncoder', 'ConvNetEncoder', 'LSTMEncoder']
assert params.encoder_type in encoder_types, "encoder_type must be in " + \
str(encoder_types)
nli_net = NLINet(config_nli_model)
print(nli_net)
# loss
weight = torch.FloatTensor(params.n_classes).fill_(1)
loss_fn = nn.CrossEntropyLoss(weight=weight)
loss_fn.size_average = False
# optimizer
optim_fn, optim_params = get_optimizer(params.optimizer)
optimizer = optim_fn(nli_net.parameters(), **optim_params)
# cuda by default
nli_net.cuda()
loss_fn.cuda()
"""
TRAIN
"""
val_acc_best = -1e10
adam_stop = False
stop_training = False
lr = optim_params['lr'] if 'sgd' in params.optimizer else None
def trainepoch(epoch):
print('\nTRAINING : Epoch ' + str(epoch))
nli_net.train()
all_costs = []
logs = []
words_count = 0
last_time = time.time()
correct = 0.
# shuffle the data
permutation = np.random.permutation(len(train['s1']))
s1 = train['s1'][permutation]
s2 = train['s2'][permutation]
target = train['label'][permutation]
optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] * params.decay if epoch>1\
and 'sgd' in params.optimizer else optimizer.param_groups[0]['lr']
print('Learning rate : {0}'.format(optimizer.param_groups[0]['lr']))
for stidx in range(0, len(s1), params.batch_size):
# prepare batch
s1_batch, s1_len = get_batch(s1[stidx:stidx + params.batch_size],
word_vec, params.word_emb_dim)
s2_batch, s2_len = get_batch(s2[stidx:stidx + params.batch_size],
word_vec, params.word_emb_dim)
s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(s2_batch.cuda())
tgt_batch = Variable(torch.LongTensor(target[stidx:stidx + params.batch_size])).cuda()
k = s1_batch.size(1) # actual batch size
# model forward
output = nli_net((s1_batch, s1_len), (s2_batch, s2_len))
pred = output.data.max(1)[1]
correct += pred.long().eq(tgt_batch.data.long()).cpu().sum()
assert len(pred) == len(s1[stidx:stidx + params.batch_size])
# loss
loss = loss_fn(output, tgt_batch)
all_costs.append(loss.data[0])
words_count += (s1_batch.nelement() + s2_batch.nelement()) / params.word_emb_dim
# backward
optimizer.zero_grad()
loss.backward()
# gradient clipping (off by default)
shrink_factor = 1
total_norm = 0
for p in nli_net.parameters():
if p.requires_grad:
p.grad.data.div_(k) # divide by the actual batch size
total_norm += p.grad.data.norm() ** 2
total_norm = np.sqrt(total_norm)
if total_norm > params.max_norm:
shrink_factor = params.max_norm / total_norm
current_lr = optimizer.param_groups[0]['lr'] # current lr (no external "lr", for adam)
optimizer.param_groups[0]['lr'] = current_lr * shrink_factor # just for update
# optimizer step
optimizer.step()
optimizer.param_groups[0]['lr'] = current_lr
if len(all_costs) == 100:
logs.append('{0} ; loss {1} ; sentence/s {2} ; words/s {3} ; accuracy train : {4}'.format(
stidx, round(np.mean(all_costs), 2),
int(len(all_costs) * params.batch_size / (time.time() - last_time)),
int(words_count * 1.0 / (time.time() - last_time)),
round(100.*correct/(stidx+k), 2)))
print(logs[-1])
last_time = time.time()
words_count = 0
all_costs = []
train_acc = round(100 * correct/len(s1), 2)
print('results : epoch {0} ; mean accuracy train : {1}'
.format(epoch, train_acc))
return train_acc
def evaluate(epoch, eval_type='valid', final_eval=False):
nli_net.eval()
correct = 0.
global val_acc_best, lr, stop_training, adam_stop
if eval_type == 'valid':
print('\nVALIDATION : Epoch {0}'.format(epoch))
s1 = valid['s1'] if eval_type == 'valid' else test['s1']
s2 = valid['s2'] if eval_type == 'valid' else test['s2']
target = valid['label'] if eval_type == 'valid' else test['label']
for i in range(0, len(s1), params.batch_size):
# prepare batch
s1_batch, s1_len = get_batch(s1[i:i + params.batch_size], word_vec, params.word_emb_dim)
s2_batch, s2_len = get_batch(s2[i:i + params.batch_size], word_vec, params.word_emb_dim)
s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(s2_batch.cuda())
tgt_batch = Variable(torch.LongTensor(target[i:i + params.batch_size])).cuda()
# model forward
output = nli_net((s1_batch, s1_len), (s2_batch, s2_len))
pred = output.data.max(1)[1]
correct += pred.long().eq(tgt_batch.data.long()).cpu().sum()
# save model
eval_acc = round(100 * correct / len(s1), 2)
if final_eval:
print('finalgrep : accuracy {0} : {1}'.format(eval_type, eval_acc))
else:
print('togrep : results : epoch {0} ; mean accuracy {1} :\
{2}'.format(epoch, eval_type, eval_acc))
if eval_type == 'valid' and epoch <= params.n_epochs:
if eval_acc > val_acc_best:
print('saving model at epoch {0}'.format(epoch))
if not os.path.exists(params.outputdir):
os.makedirs(params.outputdir)
torch.save(nli_net.state_dict(), os.path.join(params.outputdir,
params.outputmodelname))
val_acc_best = eval_acc
else:
if 'sgd' in params.optimizer:
optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] / params.lrshrink
print('Shrinking lr by : {0}. New lr = {1}'
.format(params.lrshrink,
optimizer.param_groups[0]['lr']))
if optimizer.param_groups[0]['lr'] < params.minlr:
stop_training = True
if 'adam' in params.optimizer:
# early stopping (at 2nd decrease in accuracy)
stop_training = adam_stop
adam_stop = True
return eval_acc
"""
Train model on Natural Language Inference task
"""
epoch = 1
while not stop_training and epoch <= params.n_epochs:
train_acc = trainepoch(epoch)
eval_acc = evaluate(epoch, 'valid')
epoch += 1
# Run best model on test set.
nli_net.load_state_dict(torch.load(os.path.join(params.outputdir, params.outputmodelname)))
print('\nTEST : Epoch {0}'.format(epoch))
evaluate(1e6, 'valid', True)
evaluate(0, 'test', True)
# Save encoder instead of full model
torch.save(nli_net.encoder.state_dict(), os.path.join(params.outputdir, params.outputmodelname + '.encoder.pkl'))