Skip to content

Latest commit

 

History

History
50 lines (41 loc) · 1.65 KB

README.md

File metadata and controls

50 lines (41 loc) · 1.65 KB

This repository contains the code for the paper "Using Visual Anomaly Detection for Task Execution Monitoring"

Dependencies:

See requirements.txt.

The main ones are:

  • torch=1.6.0
  • pytorch-lightning=0.9.0

Clone

git clone --recursive https://github.com/sthoduka/motion_anomaly_detection.git

Generate optical flow images

Follow the instructions here.

Train

python main.py \
  --video_root=<path to training data folder> \
  --val_video_root=<path to validation data folder> \
  --test_video_root=<path to test data folder> \
  --sample_size=64 \
  --batch_size=128 \
  --default_root_dir=<path to tensorboard logs folder> \
  --row_log_interval=10 \
  --learning_rate=0.0001 \
  --max_epochs=50 \
  --gpus=1 \
  --flow_type=normal_masked \
  --prediction_offset_start=5 \
  --prediction_offset=9

Compute expected and observed camera motion

Follow the instructions here.

Generate rendered robot body images

The dataset already includes the rendered robot body images. If you want to regenerate them or render them for your own dataset/robot, follow the instructions here.

Citation

Please cite this work in your publications if you found it useful. Here is the BibTeX entry:

@inproceedings{thoduka2021using,
  title={{Using Visual Anomaly Detection for Task Execution Monitoring}},
  author={Thoduka, Santosh and Gall, Juergen and Pl{\"o}ger, Paul G},
  booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={4604--4610},
  year={2021},
  organization={IEEE}
}