-
Notifications
You must be signed in to change notification settings - Fork 67
/
lib.rs
2229 lines (2074 loc) · 72.9 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Async I/O and timers.
//!
//! This crate provides two tools:
//!
//! * [`Async`], an adapter for standard networking types (and [many other] types) to use in
//! async programs.
//! * [`Timer`], a future or stream that emits timed events.
//!
//! For concrete async networking types built on top of this crate, see [`async-net`].
//!
//! [many other]: https://github.com/smol-rs/async-io/tree/master/examples
//! [`async-net`]: https://docs.rs/async-net
//!
//! # Implementation
//!
//! The first time [`Async`] or [`Timer`] is used, a thread named "async-io" will be spawned.
//! The purpose of this thread is to wait for I/O events reported by the operating system, and then
//! wake appropriate futures blocked on I/O or timers when they can be resumed.
//!
//! To wait for the next I/O event, the "async-io" thread uses [epoll] on Linux/Android/illumos,
//! [kqueue] on macOS/iOS/BSD, [event ports] on illumos/Solaris, and [IOCP] on Windows. That
//! functionality is provided by the [`polling`] crate.
//!
//! However, note that you can also process I/O events and wake futures on any thread using the
//! [`block_on()`] function. The "async-io" thread is therefore just a fallback mechanism
//! processing I/O events in case no other threads are.
//!
//! [epoll]: https://en.wikipedia.org/wiki/Epoll
//! [kqueue]: https://en.wikipedia.org/wiki/Kqueue
//! [event ports]: https://illumos.org/man/port_create
//! [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
//! [`polling`]: https://docs.rs/polling
//!
//! # Examples
//!
//! Connect to `example.com:80`, or time out after 10 seconds.
//!
//! ```
//! use async_io::{Async, Timer};
//! use futures_lite::{future::FutureExt, io};
//!
//! use std::net::{TcpStream, ToSocketAddrs};
//! use std::time::Duration;
//!
//! # futures_lite::future::block_on(async {
//! let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
//!
//! let stream = Async::<TcpStream>::connect(addr).or(async {
//! Timer::after(Duration::from_secs(10)).await;
//! Err(io::ErrorKind::TimedOut.into())
//! })
//! .await?;
//! # std::io::Result::Ok(()) });
//! ```
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
use std::future::Future;
use std::io::{self, IoSlice, IoSliceMut, Read, Write};
use std::net::{SocketAddr, TcpListener, TcpStream, UdpSocket};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll, Waker};
use std::time::{Duration, Instant};
#[cfg(unix)]
use std::{
os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd},
os::unix::net::{SocketAddr as UnixSocketAddr, UnixDatagram, UnixListener, UnixStream},
path::Path,
};
#[cfg(windows)]
use std::os::windows::io::{AsRawSocket, AsSocket, BorrowedSocket, OwnedSocket, RawSocket};
use futures_io::{AsyncRead, AsyncWrite};
use futures_lite::stream::{self, Stream};
use futures_lite::{future, pin, ready};
use rustix::io as rio;
use rustix::net as rn;
use crate::reactor::{Reactor, Registration, Source};
mod driver;
mod reactor;
pub mod os;
pub use driver::block_on;
pub use reactor::{Readable, ReadableOwned, Writable, WritableOwned};
/// A future or stream that emits timed events.
///
/// Timers are futures that output a single [`Instant`] when they fire.
///
/// Timers are also streams that can output [`Instant`]s periodically.
///
/// # Precision
///
/// There is a limit on the maximum precision that a `Timer` can provide. This limit is
/// dependent on the current platform; for instance, on Windows, the maximum precision is
/// about 16 milliseconds. Because of this limit, the timer may sleep for longer than the
/// requested duration. It will never sleep for less.
///
/// # Examples
///
/// Sleep for 1 second:
///
/// ```
/// use async_io::Timer;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// Timer::after(Duration::from_secs(1)).await;
/// # });
/// ```
///
/// Timeout after 1 second:
///
/// ```
/// use async_io::Timer;
/// use futures_lite::FutureExt;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// let addrs = async_net::resolve("google.com:80")
/// .or(async {
/// Timer::after(Duration::from_secs(1)).await;
/// Err(std::io::ErrorKind::TimedOut.into())
/// })
/// .await?;
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Debug)]
pub struct Timer {
/// This timer's ID and last waker that polled it.
///
/// When this field is set to `None`, this timer is not registered in the reactor.
id_and_waker: Option<(usize, Waker)>,
/// The next instant at which this timer fires.
///
/// If this timer is a blank timer, this value is None. If the timer
/// must be set, this value contains the next instant at which the
/// timer must fire.
when: Option<Instant>,
/// The period.
period: Duration,
}
impl Timer {
/// Creates a timer that will never fire.
///
/// # Examples
///
/// This function may also be useful for creating a function with an optional timeout.
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_io::Timer;
/// use futures_lite::prelude::*;
/// use std::time::Duration;
///
/// async fn run_with_timeout(timeout: Option<Duration>) {
/// let timer = timeout
/// .map(|timeout| Timer::after(timeout))
/// .unwrap_or_else(Timer::never);
///
/// run_lengthy_operation().or(timer).await;
/// }
/// # // Note that since a Timer as a Future returns an Instant,
/// # // this function needs to return an Instant to be used
/// # // in "or".
/// # async fn run_lengthy_operation() -> std::time::Instant {
/// # std::time::Instant::now()
/// # }
///
/// // Times out after 5 seconds.
/// run_with_timeout(Some(Duration::from_secs(5))).await;
/// // Does not time out.
/// run_with_timeout(None).await;
/// # });
/// ```
pub fn never() -> Timer {
Timer {
id_and_waker: None,
when: None,
period: Duration::MAX,
}
}
/// Creates a timer that emits an event once after the given duration of time.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// Timer::after(Duration::from_secs(1)).await;
/// # });
/// ```
pub fn after(duration: Duration) -> Timer {
Instant::now()
.checked_add(duration)
.map_or_else(Timer::never, Timer::at)
}
/// Creates a timer that emits an event once at the given time instant.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let now = Instant::now();
/// let when = now + Duration::from_secs(1);
/// Timer::at(when).await;
/// # });
/// ```
pub fn at(instant: Instant) -> Timer {
Timer::interval_at(instant, Duration::MAX)
}
/// Creates a timer that emits events periodically.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let period = Duration::from_secs(1);
/// Timer::interval(period).next().await;
/// # });
/// ```
pub fn interval(period: Duration) -> Timer {
Instant::now()
.checked_add(period)
.map_or_else(Timer::never, |at| Timer::interval_at(at, period))
}
/// Creates a timer that emits events periodically, starting at `start`.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let start = Instant::now();
/// let period = Duration::from_secs(1);
/// Timer::interval_at(start, period).next().await;
/// # });
/// ```
pub fn interval_at(start: Instant, period: Duration) -> Timer {
Timer {
id_and_waker: None,
when: Some(start),
period,
}
}
/// Indicates whether or not this timer will ever fire.
///
/// [`never()`] will never fire, and timers created with [`after()`] or [`at()`] will fire
/// if the duration is not too large.
///
/// [`never()`]: Timer::never()
/// [`after()`]: Timer::after()
/// [`at()`]: Timer::at()
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_io::Timer;
/// use futures_lite::prelude::*;
/// use std::time::Duration;
///
/// // `never` will never fire.
/// assert!(!Timer::never().will_fire());
///
/// // `after` will fire if the duration is not too large.
/// assert!(Timer::after(Duration::from_secs(1)).will_fire());
/// assert!(!Timer::after(Duration::MAX).will_fire());
///
/// // However, once an `after` timer has fired, it will never fire again.
/// let mut t = Timer::after(Duration::from_secs(1));
/// assert!(t.will_fire());
/// (&mut t).await;
/// assert!(!t.will_fire());
///
/// // Interval timers will fire periodically.
/// let mut t = Timer::interval(Duration::from_secs(1));
/// assert!(t.will_fire());
/// t.next().await;
/// assert!(t.will_fire());
/// # });
/// ```
#[inline]
pub fn will_fire(&self) -> bool {
self.when.is_some()
}
/// Sets the timer to emit an event once after the given duration of time.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_after()`][`Timer::set_after()`] does not remove the waker associated with the task
/// that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
/// t.set_after(Duration::from_millis(100));
/// # });
/// ```
pub fn set_after(&mut self, duration: Duration) {
match Instant::now().checked_add(duration) {
Some(instant) => self.set_at(instant),
None => {
// Overflow to never going off.
self.clear();
self.when = None;
}
}
}
/// Sets the timer to emit an event once at the given time instant.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_at()`][`Timer::set_at()`] does not remove the waker associated with the task
/// that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
///
/// let now = Instant::now();
/// let when = now + Duration::from_secs(1);
/// t.set_at(when);
/// # });
/// ```
pub fn set_at(&mut self, instant: Instant) {
self.clear();
// Update the timeout.
self.when = Some(instant);
if let Some((id, waker)) = self.id_and_waker.as_mut() {
// Re-register the timer with the new timeout.
*id = Reactor::get().insert_timer(instant, waker);
}
}
/// Sets the timer to emit events periodically.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_interval()`][`Timer::set_interval()`] does not remove the waker associated with the
/// task that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
///
/// let period = Duration::from_secs(2);
/// t.set_interval(period);
/// # });
/// ```
pub fn set_interval(&mut self, period: Duration) {
match Instant::now().checked_add(period) {
Some(instant) => self.set_interval_at(instant, period),
None => {
// Overflow to never going off.
self.clear();
self.when = None;
}
}
}
/// Sets the timer to emit events periodically, starting at `start`.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_interval_at()`][`Timer::set_interval_at()`] does not remove the waker associated with
/// the task that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
///
/// let start = Instant::now();
/// let period = Duration::from_secs(2);
/// t.set_interval_at(start, period);
/// # });
/// ```
pub fn set_interval_at(&mut self, start: Instant, period: Duration) {
self.clear();
self.when = Some(start);
self.period = period;
if let Some((id, waker)) = self.id_and_waker.as_mut() {
// Re-register the timer with the new timeout.
*id = Reactor::get().insert_timer(start, waker);
}
}
/// Helper function to clear the current timer.
fn clear(&mut self) {
if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.as_ref()) {
// Deregister the timer from the reactor.
Reactor::get().remove_timer(when, *id);
}
}
}
impl Drop for Timer {
fn drop(&mut self) {
if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.take()) {
// Deregister the timer from the reactor.
Reactor::get().remove_timer(when, id);
}
}
}
impl Future for Timer {
type Output = Instant;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.poll_next(cx) {
Poll::Ready(Some(when)) => Poll::Ready(when),
Poll::Pending => Poll::Pending,
Poll::Ready(None) => unreachable!(),
}
}
}
impl Stream for Timer {
type Item = Instant;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let this = self.get_mut();
if let Some(ref mut when) = this.when {
// Check if the timer has already fired.
if Instant::now() >= *when {
if let Some((id, _)) = this.id_and_waker.take() {
// Deregister the timer from the reactor.
Reactor::get().remove_timer(*when, id);
}
let result_time = *when;
if let Some(next) = (*when).checked_add(this.period) {
*when = next;
// Register the timer in the reactor.
let id = Reactor::get().insert_timer(next, cx.waker());
this.id_and_waker = Some((id, cx.waker().clone()));
} else {
this.when = None;
}
return Poll::Ready(Some(result_time));
} else {
match &this.id_and_waker {
None => {
// Register the timer in the reactor.
let id = Reactor::get().insert_timer(*when, cx.waker());
this.id_and_waker = Some((id, cx.waker().clone()));
}
Some((id, w)) if !w.will_wake(cx.waker()) => {
// Deregister the timer from the reactor to remove the old waker.
Reactor::get().remove_timer(*when, *id);
// Register the timer in the reactor with the new waker.
let id = Reactor::get().insert_timer(*when, cx.waker());
this.id_and_waker = Some((id, cx.waker().clone()));
}
Some(_) => {}
}
}
}
Poll::Pending
}
}
/// Async adapter for I/O types.
///
/// This type puts an I/O handle into non-blocking mode, registers it in
/// [epoll]/[kqueue]/[event ports]/[IOCP], and then provides an async interface for it.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Caveats
///
/// [`Async`] is a low-level primitive, and as such it comes with some caveats.
///
/// For higher-level primitives built on top of [`Async`], look into [`async-net`] or
/// [`async-process`] (on Unix).
///
/// The most notable caveat is that it is unsafe to access the inner I/O source mutably
/// using this primitive. Traits likes [`AsyncRead`] and [`AsyncWrite`] are not implemented by
/// default unless it is guaranteed that the resource won't be invalidated by reading or writing.
/// See the [`IoSafe`] trait for more information.
///
/// [`async-net`]: https://github.com/smol-rs/async-net
/// [`async-process`]: https://github.com/smol-rs/async-process
/// [`AsyncRead`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncRead.html
/// [`AsyncWrite`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncWrite.html
///
/// ### Supported types
///
/// [`Async`] supports all networking types, as well as some OS-specific file descriptors like
/// [timerfd] and [inotify].
///
/// However, do not use [`Async`] with types like [`File`][`std::fs::File`],
/// [`Stdin`][`std::io::Stdin`], [`Stdout`][`std::io::Stdout`], or [`Stderr`][`std::io::Stderr`]
/// because all operating systems have issues with them when put in non-blocking mode.
///
/// [timerfd]: https://github.com/smol-rs/async-io/blob/master/examples/linux-timerfd.rs
/// [inotify]: https://github.com/smol-rs/async-io/blob/master/examples/linux-inotify.rs
///
/// ### Concurrent I/O
///
/// Note that [`&Async<T>`][`Async`] implements [`AsyncRead`] and [`AsyncWrite`] if `&T`
/// implements those traits, which means tasks can concurrently read and write using shared
/// references.
///
/// But there is a catch: only one task can read a time, and only one task can write at a time. It
/// is okay to have two tasks where one is reading and the other is writing at the same time, but
/// it is not okay to have two tasks reading at the same time or writing at the same time. If you
/// try to do that, conflicting tasks will just keep waking each other in turn, thus wasting CPU
/// time.
///
/// Besides [`AsyncRead`] and [`AsyncWrite`], this caveat also applies to
/// [`poll_readable()`][`Async::poll_readable()`] and
/// [`poll_writable()`][`Async::poll_writable()`].
///
/// However, any number of tasks can be concurrently calling other methods like
/// [`readable()`][`Async::readable()`] or [`read_with()`][`Async::read_with()`].
///
/// ### Closing
///
/// Closing the write side of [`Async`] with [`close()`][`futures_lite::AsyncWriteExt::close()`]
/// simply flushes. If you want to shutdown a TCP or Unix socket, use
/// [`Shutdown`][`std::net::Shutdown`].
///
/// # Examples
///
/// Connect to a server and echo incoming messages back to the server:
///
/// ```no_run
/// use async_io::Async;
/// use futures_lite::io;
/// use std::net::TcpStream;
///
/// # futures_lite::future::block_on(async {
/// // Connect to a local server.
/// let stream = Async::<TcpStream>::connect(([127, 0, 0, 1], 8000)).await?;
///
/// // Echo all messages from the read side of the stream into the write side.
/// io::copy(&stream, &stream).await?;
/// # std::io::Result::Ok(()) });
/// ```
///
/// You can use either predefined async methods or wrap blocking I/O operations in
/// [`Async::read_with()`], [`Async::read_with_mut()`], [`Async::write_with()`], and
/// [`Async::write_with_mut()`]:
///
/// ```no_run
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // These two lines are equivalent:
/// let (stream, addr) = listener.accept().await?;
/// let (stream, addr) = listener.read_with(|inner| inner.accept()).await?;
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Debug)]
pub struct Async<T> {
/// A source registered in the reactor.
source: Arc<Source>,
/// The inner I/O handle.
io: Option<T>,
}
impl<T> Unpin for Async<T> {}
#[cfg(unix)]
impl<T: AsFd> Async<T> {
/// Creates an async I/O handle.
///
/// This method will put the handle in non-blocking mode and register it in
/// [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::{SocketAddr, TcpListener};
///
/// # futures_lite::future::block_on(async {
/// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?;
/// let listener = Async::new(listener)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn new(io: T) -> io::Result<Async<T>> {
// Put the file descriptor in non-blocking mode.
set_nonblocking(io.as_fd())?;
Self::new_nonblocking(io)
}
/// Creates an async I/O handle without setting it to non-blocking mode.
///
/// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Caveats
///
/// The caller should ensure that the handle is set to non-blocking mode or that it is okay if
/// it is not set. If not set to non-blocking mode, I/O operations may block the current thread
/// and cause a deadlock in an asynchronous context.
pub fn new_nonblocking(io: T) -> io::Result<Async<T>> {
// SAFETY: It is impossible to drop the I/O source while it is registered through
// this type.
let registration = unsafe { Registration::new(io.as_fd()) };
Ok(Async {
source: Reactor::get().insert_io(registration)?,
io: Some(io),
})
}
}
#[cfg(unix)]
impl<T: AsRawFd> AsRawFd for Async<T> {
fn as_raw_fd(&self) -> RawFd {
self.get_ref().as_raw_fd()
}
}
#[cfg(unix)]
impl<T: AsFd> AsFd for Async<T> {
fn as_fd(&self) -> BorrowedFd<'_> {
self.get_ref().as_fd()
}
}
#[cfg(unix)]
impl<T: AsFd + From<OwnedFd>> TryFrom<OwnedFd> for Async<T> {
type Error = io::Error;
fn try_from(value: OwnedFd) -> Result<Self, Self::Error> {
Async::new(value.into())
}
}
#[cfg(unix)]
impl<T: Into<OwnedFd>> TryFrom<Async<T>> for OwnedFd {
type Error = io::Error;
fn try_from(value: Async<T>) -> Result<Self, Self::Error> {
value.into_inner().map(Into::into)
}
}
#[cfg(windows)]
impl<T: AsSocket> Async<T> {
/// Creates an async I/O handle.
///
/// This method will put the handle in non-blocking mode and register it in
/// [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::{SocketAddr, TcpListener};
///
/// # futures_lite::future::block_on(async {
/// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?;
/// let listener = Async::new(listener)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn new(io: T) -> io::Result<Async<T>> {
// Put the socket in non-blocking mode.
set_nonblocking(io.as_socket())?;
Self::new_nonblocking(io)
}
/// Creates an async I/O handle without setting it to non-blocking mode.
///
/// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Caveats
///
/// The caller should ensure that the handle is set to non-blocking mode or that it is okay if
/// it is not set. If not set to non-blocking mode, I/O operations may block the current thread
/// and cause a deadlock in an asynchronous context.
pub fn new_nonblocking(io: T) -> io::Result<Async<T>> {
// Create the registration.
//
// SAFETY: It is impossible to drop the I/O source while it is registered through
// this type.
let registration = unsafe { Registration::new(io.as_socket()) };
Ok(Async {
source: Reactor::get().insert_io(registration)?,
io: Some(io),
})
}
}
#[cfg(windows)]
impl<T: AsRawSocket> AsRawSocket for Async<T> {
fn as_raw_socket(&self) -> RawSocket {
self.get_ref().as_raw_socket()
}
}
#[cfg(windows)]
impl<T: AsSocket> AsSocket for Async<T> {
fn as_socket(&self) -> BorrowedSocket<'_> {
self.get_ref().as_socket()
}
}
#[cfg(windows)]
impl<T: AsSocket + From<OwnedSocket>> TryFrom<OwnedSocket> for Async<T> {
type Error = io::Error;
fn try_from(value: OwnedSocket) -> Result<Self, Self::Error> {
Async::new(value.into())
}
}
#[cfg(windows)]
impl<T: Into<OwnedSocket>> TryFrom<Async<T>> for OwnedSocket {
type Error = io::Error;
fn try_from(value: Async<T>) -> Result<Self, Self::Error> {
value.into_inner().map(Into::into)
}
}
impl<T> Async<T> {
/// Gets a reference to the inner I/O handle.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
/// let inner = listener.get_ref();
/// # std::io::Result::Ok(()) });
/// ```
pub fn get_ref(&self) -> &T {
self.io.as_ref().unwrap()
}
/// Gets a mutable reference to the inner I/O handle.
///
/// # Safety
///
/// The underlying I/O source must not be dropped using this function.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
/// let inner = unsafe { listener.get_mut() };
/// # std::io::Result::Ok(()) });
/// ```
pub unsafe fn get_mut(&mut self) -> &mut T {
self.io.as_mut().unwrap()
}
/// Unwraps the inner I/O handle.
///
/// This method will **not** put the I/O handle back into blocking mode.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
/// let inner = listener.into_inner()?;
///
/// // Put the listener back into blocking mode.
/// inner.set_nonblocking(false)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn into_inner(mut self) -> io::Result<T> {
let io = self.io.take().unwrap();
Reactor::get().remove_io(&self.source)?;
Ok(io)
}
/// Waits until the I/O handle is readable.
///
/// This method completes when a read operation on this I/O handle wouldn't block.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // Wait until a client can be accepted.
/// listener.readable().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn readable(&self) -> Readable<'_, T> {
Source::readable(self)
}
/// Waits until the I/O handle is readable.
///
/// This method completes when a read operation on this I/O handle wouldn't block.
pub fn readable_owned(self: Arc<Self>) -> ReadableOwned<T> {
Source::readable_owned(self)
}
/// Waits until the I/O handle is writable.
///
/// This method completes when a write operation on this I/O handle wouldn't block.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::{TcpStream, ToSocketAddrs};
///
/// # futures_lite::future::block_on(async {
/// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
/// let stream = Async::<TcpStream>::connect(addr).await?;
///
/// // Wait until the stream is writable.
/// stream.writable().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn writable(&self) -> Writable<'_, T> {
Source::writable(self)
}
/// Waits until the I/O handle is writable.
///
/// This method completes when a write operation on this I/O handle wouldn't block.
pub fn writable_owned(self: Arc<Self>) -> WritableOwned<T> {
Source::writable_owned(self)
}
/// Polls the I/O handle for readability.
///
/// When this method returns [`Poll::Ready`], that means the OS has delivered an event
/// indicating readability since the last time this task has called the method and received
/// [`Poll::Pending`].
///
/// # Caveats
///
/// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
/// will just keep waking each other in turn, thus wasting CPU time.
///
/// Note that the [`AsyncRead`] implementation for [`Async`] also uses this method.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use futures_lite::future;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // Wait until a client can be accepted.
/// future::poll_fn(|cx| listener.poll_readable(cx)).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn poll_readable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.source.poll_readable(cx)
}
/// Polls the I/O handle for writability.
///
/// When this method returns [`Poll::Ready`], that means the OS has delivered an event
/// indicating writability since the last time this task has called the method and received
/// [`Poll::Pending`].
///
/// # Caveats
///
/// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
/// will just keep waking each other in turn, thus wasting CPU time.
///
/// Note that the [`AsyncWrite`] implementation for [`Async`] also uses this method.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use futures_lite::future;
/// use std::net::{TcpStream, ToSocketAddrs};
///
/// # futures_lite::future::block_on(async {
/// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
/// let stream = Async::<TcpStream>::connect(addr).await?;
///
/// // Wait until the stream is writable.
/// future::poll_fn(|cx| stream.poll_writable(cx)).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn poll_writable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {