
Running with Scissors:
Live Coding with Data

@stuarthalloway

About Me

 30 years programming

 Languages: 8086 Assembly, C, C++, Clojure, Java,
JavaScript, Ruby, Obj-C, Perl, Python, Smalltalk

 Roles: developer, founder, manager, operations, owner,
stakeholder, support, tester, trainer

 Developer: Clojure, ClojureScript, Datomic

About Clojure

 Dynamic

 Functional

 Hosted

 Lisp

https://insights.stackoverflow.com/survey/2018#work-salary-and-experience-by-language

Clojure

https://insights.stackoverflow.com/survey/2018#work-salary-and-experience-by-language

https://redmonk.com/sogrady/2018/08/10/language-rankings-6-18/

Clojure

Rationale

 Dynamic

 Functional

 Hosted

 Lisp

Running with Scissors:
Live Coding with Data

(a Clojure dev workflow)

Running

 Work inside your running program

 REPL: Read, Eval, Print, Loop

 Fast feedback loop

Text read

Data

program

eval

Data Data

data?
printText

macros

A La Carte Read

 1 (let [db (d/db conn)
 2 ent (d/entity db ftx)]
 3 (println (d/touch ent))
 4 (flush)
 5 (let [action (edn/read in)
 6 result (perform-cat-action action conn ftx)]
 7 (case result
 8 :quit (reduced total)
 9 :next (inc total)
 10 :skip total
 11 :again (recur))))

read
instruction

reducing over
financial transactions

polymorphic
processing

Custom Print

Text read

Data

program

eval

Data Data

data?
printText

macros

 1 (require '[clojure.pprint :as pp]
 2 '[clojure.main :as main])
 3 (clojure.main/repl :print pp/pprint)

Custom Error Printing

Common REPL Concerns

 I already have a shell…

 Typing into a REPL sucks…

 Somebody made spaghetti code at a REPL once…

“Just a Shell” is Not Enough

REPL “Sidecar” Shell

program semantics sequential evaluation
of forms

files, modules,
projects, etc.

interactive semantics sequential evaluation
of forms

special, maybe not
like programs

text -> data read literals?
parser?

text -> code read parser to AST? 
eval text?

object to text?
toString?

execute eval data

data -> text print

Sidecar Shells: JShell

“The JShell state includes an evolving code and
execution state. To facilitate rapid investigation
and coding, statements and expressions need
not occur within a method, and variables and
method need not occur within a class.”

— http://openjdk.java.net/jeps/222

http://openjdk.java.net/jeps/222

REPL is Not About Text Entry

Spaghetti Code?
 REPL + imperative = faster spaghetti

Functional Code
 REPL + Functional = faster bricks

https://en.wikipedia.org/wiki/Brick#/media/File:Brick_wall_close-up_view.jpg

https://en.wikipedia.org/wiki/Brick#/media/File:Brick_wall_close-up_view.jpg

…with Scissors

 Don’t run your entire program!

 Focus: cut your code and data

 down to match the job at hand

Task-Specific Dev

 Start with example data

 maybe generate data for exploration

 Interactively test some fns

 Load what you need (namespaces, vars, etc.)

 Custom UI

Example Data

 1 (def dominator
 2 "Map from a move to its dominator."
 3 {:rock :paper
 4 :scissors :rock
 5 :paper :scissors})
 6
 7 (def moves
 8 "The set of legal moves."
 9 (into #{} (keys dominator)))

Inspired by http://rubyquiz.com/quiz16.html

http://rubyquiz.com/quiz16.html

Generating Data

Load What You Need

 1 (require '[clojure.data.csv :as csv]
 2 '[clojure.java.io :as io]
 3 '[clojure.pprint :as pp]
 4 '[clojure.spec.alpha :as s]
 5 '[datomic.api :as d]
 6 '[pfinance.repl :refer :all])
 7
 8 (set! *print-length* 50)
 9 (def uri "datomic:dev://localhost:4334/pfinance")
 10 (def conn (d/connect uri))
 11 (def db (d/db conn))

state

code

Custom UI

 Don’t pound your head against a wall of text

 pretty-print (and print-table) it

 inspect it

 make a spreadsheet

 make HTML

 make a picture

No
@(def data (repeatedly 100 (fn [] {:alpha (rand-int 100)
 :beta (rand-int 100)})))

=> ({:alpha 58, :beta 45} {:alpha 45, :beta 83} {:alpha 64, :beta 71} {:alpha 0, :beta
30} {:alpha 8, :beta 24} {:alpha 50, :beta 49} {:alpha 73, :beta 63} {:alpha 1, :beta 3}
{:alpha 30, :beta 34} {:alpha 79, :beta 62} {:alpha 64, :beta 29} {:alpha 72, :beta 74}
{:alpha 28, :beta 15} {:alpha 64, :beta 53} {:alpha 74, :beta 38} {:alpha 93, :beta 26}
{:alpha 9, :beta 89} {:alpha 48, :beta 29} {:alpha 64, :beta 51} {:alpha 35, :beta 15}
{:alpha 0, :beta 79} {:alpha 74, :beta 91} {:alpha 17, :beta 99} {:alpha 2, :beta 14}
{:alpha 66, :beta 70} {:alpha 75, :beta 69} {:alpha 40, :beta 70} {:alpha 29, :beta 82}
{:alpha 85, :beta 94} {:alpha 2, :beta 68} {:alpha 2, :beta 28} {:alpha 30, :beta 34}
{:alpha 57, :beta 48} {:alpha 57, :beta 87} {:alpha 44, :beta 38} {:alpha 29, :beta 14}
{:alpha 55, :beta 88} {:alpha 2, :beta 59} {:alpha 28, :beta 5} {:alpha 17, :beta 4}
{:alpha 44, :beta 35} {:alpha 79, :beta 8} {:alpha 18, :beta 36} {:alpha 7, :beta 7}
{:alpha 32, :beta 5} {:alpha 56, :beta 34} {:alpha 12, :beta 73} {:alpha 88, :beta 98}
{:alpha 20, :beta 41} {:alpha 72, :beta 73} {:alpha 72, :beta 75} {:alpha 5, :beta 29}
{:alpha 68, :beta 9} {:alpha 60, :beta 89} {:alpha 4, :beta 27} {:alpha 11, :beta 28}
{:alpha 4, :beta 91} {:alpha 68, :beta 86} {:alpha 2, :beta 23} {:alpha 62, :beta 38}
{:alpha 19, :beta 81} {:alpha 9, :beta 67} {:alpha 56, :beta 43} {:alpha 59, :beta 69}
{:alpha 52, :beta 68} {:alpha 99, :beta 60} {:alpha 76, :beta 11} {:alpha 55, :beta 73}
{:alpha 48, :beta 64} {:alpha 72, :beta 95} {:alpha 95, :beta 23} {:alpha 89, :beta 65}
{:alpha 28, :beta 14} {:alpha 91, :beta 10} {:alpha 49, :beta 68} {:alpha 95, :beta 43}
{:alpha 31, :beta 90} {:alpha 74, :beta 99} {:alpha 44, :beta 86} {:alpha 17, :beta 77}
{:alpha 93, :beta 56} {:alpha 11, :beta 50} {:alpha 58, :beta 38} {:alpha 27, :beta 88}
{:alpha 92, :beta 62} {:alpha 56, :beta 33} {:alpha 48, :beta 73} {:alpha 14, :beta 14}
{:alpha 56, :beta 97} {:alpha 97, :beta 28} {:alpha 41, :beta 30} {:alpha 99, :beta 47}
{:alpha 30, :beta 18} {:alpha 53, :beta 99} {:alpha 51, :beta 1} {:alpha 96, :beta 95}
{:alpha 40, :beta 23} {:alpha 46, :beta 74} {:alpha 33, :beta 43} {:alpha 27, :beta 84})

Inspect It
(require '[clojure.inspector :as ins])
(ins/inspect-table data)

Spreadsheet It
(with-open [w (io/writer "temp.csv")]
 (csv/write-csv  
 w

 (map->csv data [:alpha :beta])))
(sh/sh "open" "temp.csv")

Picture It
 Specviz: generate Graphviz from Clojure spec

https://github.com/jebberjeb/specviz

https://github.com/jebberjeb/specviz

Too Much Work?

“With a REPL first I need to do a load of import
statements. Then populate my objects. Then get started

with the actual debugging. I personally don't find it
anywhere near as efficient as an IDE that has been setup.”

— https://news.ycombinator.com/item?id=16315552

“do” block, anyone?
— me

https://news.ycombinator.com/item?id=16315552

Rich Comment Blocks

 At end of a .clj file

 Sample data

 Sample invocations

 Durable history of the dev process

Rich Comments
(comment
(do
 (refer 'set)
 (def xs #{{:a 11 :b 1 :c 1 :d 4}
 {:a 2 :b 12 :c 2 :d 6}
 {:a 3 :b 3 :c 3 :d 8 :f 42}})

 (def ys #{{:a 11 :b 11 :c 11 :e 5}
 {:a 12 :b 11 :c 12 :e 3}
 {:a 3 :b 3 :c 3 :e 7 }}))

(join xs ys)
(join xs (rename ys {:b :yb :c :yc}) {:a :a})

(union #{:a :b :c} #{:c :d :e })
(difference #{:a :b :c} #{:c :d :e})
(intersection #{:a :b :c} #{:c :d :e})

(index ys [:b])
)

setup

expedition
log

What About Tests?

 Automate (re)running of REPL interactions

 Instead of testing specialness, lean on language for

 lifecycle / reuse / scope / state / validation

Transcriptor
 1 ;; my-test.repl
 2 (require '[cognitect.transcriptor :refer (check!)])
 3
 4 ;; check exact match
 5 (+ 1 2)
 6 (check! #{3})
 7
 8 ;; check predicate (or any spec!)
 9 (+ 1 1)
 10 (check! even?)

 1 ;; my-suite.repl
 2 (require '[cognitect.transcriptor :as xr :refer (check!)])
 3 (xr/run "my-test.repl")

https://github.com/cognitect-labs/transcriptor

https://github.com/cognitect-labs/transcriptor

Sets: Scissors-Ready Data

 Just do it

 Strongly-named keys

{:github/id "stuarthalloway"
 :github/location "Chapel Hill, NC"}

{:twitter/id "stuarthalloway"
 :twitter/joined #inst "2008-03"}

 {:name/last "Halloway"
 :name/first "Stuart"}

Slots
 Enumerate prior to use

 Specify names, or types, or both

 Sorry, No Scissors! — separate API per struct

struct TwitterAccount {
 String id;
 Date joined;
};

struct Person {
 String last;
 String first;
};

struct GithubAccount {
 String id;
 Date joined;
};

Ad hoc Merge

(def about-me
 (merge
 {:github/id "stuarthalloway"
 :github/location "Chapel Hill, NC"}
 {:name/last "Halloway"
 :name/first "Stuart"}
 {:twitter/id "stuarthalloway"
 :twitter/joined #inst "2008-03"}))

multiple ids ok, no collision
thanks to namespace names

Ad Hoc Enumeration

(defn keys-named
 "Given map m, return all the keys whose
 name component is n."
 [m n]
 (filter #(= (name %) n) (keys m)))

(keys-named about-me "id")
=> (:github/id :twitter/id)

Perfectly Good Fact,
or Broken Struct?

(select-keys about-me [:github/location])
=> {:github/location "Chapel Hill, NC"}

Slots vs. Sets

Slots Sets

worldview closed open

genericity no it’s just maps

ad hoc usage no carve away!

scaling dev effort combinatorial linear

Celebrate Needless Effort

https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

Live Coding

 Your running program is tangible

 query it

 transform it

 program it

Query the Program

Clojure API args returns count

apropos stringy symbols N

find-doc stringy docstrings N

doc symbol docstring 1

source symbol source string 1

all-ns - namespaces all

ns-publics namespacey map sym->var all

imports namespacey classes all

Transform the Program
 finish experiments / undo mistakes

 without ever leaving your running program

Clojure API args change

in-ns sym *ns*

def symbol, init? new var root

ns-unmap ns, sym remove symbol

ns-unalias ns, sym remove alias

remove-ns sym remove ns

Codeveloping Two Libs

 Load both libs from the REPL

 Jump in and study data

 including ad-hoc programs

 Make changes one def form at a time

 Leave test setup in a comment

Live Coding vs. Reloading

 “workflow, reloaded” operates one level higher

 files and namespaces, tools help keep track

 app state must adhere to certain idioms

 live coding is targeted surgery

 more precise

 developer keeps track

 both have utility

http://thinkrelevance.com/blog/2013/06/04/clojure-workflow-reloaded

http://thinkrelevance.com/blog/2013/06/04/clojure-workflow-reloaded

What About GUI Debuggers?

 “Off the rack” experience

 improved visibility

 limited/special transformations

 no/weak programmability

 Not scissors

Live Data: Clojure spec

 a la carte specificity without sacrificing generality

 you get to keep your scissors

 dynamic leverage

 anytime, anywhere, up to you

 fantastic for brownfield development

spec as Exploration Tool

What How

what are the building blocks? declarative structure

what invariants hold? arbitrary predicates

how do I check? validation

what went wrong? explanation

what went right? conformance

docs please autodoc

examples please sample generator

am I using this right? instrumentation

is my code correct? generative testing

can I recombine pieces like this? assertion

https://www.youtube.com/watch?v=VNTQ-M_uSo8

https://www.youtube.com/watch?v=VNTQ-M_uSo8

clj-xchart

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

(c/pie-chart
 [["Not Pacman" 1/4]
 ["Pacman" 3/4]]
 {:start-angle 225.0
 :plot {:background-color :black}
 :series [{:color :black} {:color :yellow}]})

note scissor-ready
generic data

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

From Basic Predicates

(s/def ::chartable-number (s/and number? finite?))
(s/def ::x (s/every ::chartable-number :min-count 1))
(s/def ::y (s/every ::chartable-number :min-count 1))

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

To Testable Types

(defn axis-counts-match?
 [{:keys [x y error-bars bubble] :as args}]
 (= (count (second x))
 (count y)
 (count (or error-bars y))
 (count (or bubble y)))))

(defmethod data-compatible-with-render-style? :area
 [series]
 (ordered? (second (:x series))))

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

Exercising Data

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

(s/exercise ::series/line-width)
=> ([2.0 2.0] [23 23] [16 16] [1.0 1.0]
 [0.5 0.5] [0.9375 0.9375] [74 74] [1 1] [1 1] [39 39])

(s/exercise ::series/series-name 5 generators)
=> (["Grommets" "Grommets"] ["Emacs Users" "Emacs Users"]
 ["Grommets" "Grommets"] ["Vim Users" "Vim Users"]
 ["Expected" "Expected"])

http://blog.cognitect.com/blog/2017/6/19/improving-on-types-specing-a-java-library

Exercising Code

Instrumentation

(xchart/xy-chart {"bad-chart"
 {:x [3 2 1] :y [4 5 7]
 :style {:render-style :area}}})

=> ExceptionInfo Call to #'com.hypirion.clj-xchart/xy-chart
 did not conform to spec:
val: {:x [:numbers [3 2 1]], :y [4 5 7],
 :style {:render-style :area}}
fails spec: :com.hypirion.clj-xchart.specs.series.xy/series-elem
at: [:args :series 1] predicate: data-compatible-with-render-style?

Reflections

 spec-ing (can be) interactive

 specs need not be complete or exact

 specs work for you, not you for specs

 add support where you need/want it

 get your exercise!

 generative testing found a bug in the JVM!

 Running

 work inside your program, from a REPL

 with Scissors

 precision cut your code and data down to size

 Live coding

 against a tangible runtime

 Live data

 explore and extend programs with spec

Running with Scissors:
Live Coding with Data

@stuarthalloway

