-
Notifications
You must be signed in to change notification settings - Fork 1
/
arith07.m
850 lines (816 loc) · 29.3 KB
/
arith07.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
function varargout = Arith07(xC)
% Arith07 Arithmetic encoder or decoder
% Vectors of integers are arithmetic encoded,
% these vectors are collected in a cell array, xC.
% If first argument is a cell array the function do encoding,
% else decoding is done.
%
% [y, Res] = Arith07(xC); % encoding
% y = Arith07(xC); % encoding
% xC = Arith07(y); % decoding
% ------------------------------------------------------------------
% Arguments:
% y a column vector of non-negative integers (bytes) representing
% the code, 0 <= y(i) <= 255.
% Res a matrix that sum up the results, size is (NumOfX+1)x4
% one line for each of the input sequences, the columns are
% Res(:,1) - number of elements in the sequence
% Res(:,2) - unused (=0)
% Res(:,3) - bits needed to code the sequence
% Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)
% Then the last line is total (which include bits needed to store NumOfX)
% xC a cell array of column vectors of integers representing the
% symbol sequences. (should not be to large integers)
% If only one sequence is to be coded, we must make the cell array
% like: xC=cell(2,1); xC{1}=x; % where x is the sequence
% ------------------------------------------------------------------
% Note: this routine is extremely slow since it is all Matlab code
% SOME NOTES ON THE FUNCTION
% This function is almost like Arith06, but some important changes have
% been done. Arith06 is buildt almost like Huff06, but this close connection
% is removed in Arith07. This imply that to understand the way Arith06
% works you should read the dokumentation for Huff06 and especially the
% article on Recursive Huffman Coding. To understand how Arith07 works it is
% only confusing to read about the recursive Huffman coder, Huff06.
%
% Arith07 code each of the input sequences in xC in sequence, the
% method used for each sequence depends on what kind (xType) the
% sequence is. We have
% xType Explanation
% 0 Empty sequence (L=0)
% 1 Only one symbol (L=1) and x>1
% 9 Only one symbol (L=1) and x=0/1
% 11 Only one symbol (L=1) and x<0
% 2 all symbols are equal, L>1, x(1)=x(2)=...=x(L)>1
% 8 all symbols are equal, L>1, x(1)=x(2)=...=x(L)=0/1
% 10 all symbols are equal, L>1, x(1)=x(2)=...=x(L)<0
% 3 non-negative integers, 0<=x(l)<=1000
% 4 not to large integers, -1000<=x(l)<=1000
% 5 large non-negative integers possible, 0<=x(l)
% 6 also possible with large negative numbers
% 7 A binary sequence, x(l)=0/1.
% Many functions are defined in this m-file:
% PutBit, GetBit read and write bit from/to bitstream
% PutABit, GetABit Arithmetic encoding of a bit, P{0}=P{1}=0.5
% PutVLIC, GetVLIC Variable Length Integer Code
% PutS(x,S,C), GetS(S,C) A symbol x, which is in S, is aritmetic coded
% according to the counts given by C.
% Ex: A binary variable with the givene probabilities
% P{0}=0.8 and P{1}=0.2, PutS(x,[0,1],[4,1]).
% PutN(x,N), GetN(N) Arithmetic coding of a number x in range 0<=x<=N where
% we assume equal probability, P{0}=P{1}=...=P{N}=1/(N+1)
%----------------------------------------------------------------------
% Copyright (c) 1999-2001. Karl Skretting. All rights reserved.
% Hogskolen in Stavanger (Stavanger University), Signal Processing Group
% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/
%
% HISTORY:
% Ver. 1.0 19.05.2001 KS: Function made (based on Arith06 and Huff06)
%----------------------------------------------------------------------
% these global variables are used to read from or write to the compressed sequence
global y Byte BitPos
% and these are used by the subfunctions for arithmetic coding
global high low range ub hc lc sc K code
Mfile='Arith07';
K=24; % number of bits to use in integers (4 <= K <= 24)
Display=1; % display progress and/or results
% check input and output arguments, and assign values to arguments
if (nargin < 1);
error([Mfile,': function must have input arguments, see help.']);
end
if (nargout < 1);
error([Mfile,': function must have output arguments, see help.']);
end
if (~iscell(xC))
Encode=0;Decode=1;
y=xC(:); % first argument is y
y=[y;0;0;0;0]; % add some zeros to always have bits available
else
Encode=1;Decode=0;
NumOfX = length(xC);
end
Byte=0;BitPos=1; % ready to read/write into first position
low=0;high=2^K-1;ub=0; % initialize the coder
code=0;
% we just select some probabilities which we belive will work quite well
TypeS=[ 3, 4, 5, 7, 6, 1, 9, 11, 2, 8, 10, 0];
TypeC=[100, 50, 50, 50, 20, 10, 10, 10, 4, 4, 2, 1];
if Encode
Res=zeros(NumOfX,4);
% initalize the global variables
y=zeros(10,1); % put some zeros into y initially
% start encoding, first write VLIC to give number of sequences
PutVLIC(NumOfX);
% now encode each sequence continuously
Ltot=0;
for num=1:NumOfX
x=xC{num};
x=full(x(:)); % make sure x is a non-sparse column vector
L=length(x);
Ltot=Ltot+L;
y=[y(1:Byte);zeros(50+2*L,1)]; % make more space available in y
StartPos=Byte*8-BitPos+ub; % used for counting bits
% find what kind of sequenqe we have, save this in xType
if (L==0)
xType=0;
elseif L==1
if (x==0) | (x==1) % and it is 0/1
xType=9;
elseif (maxx>1) % and it is not 0/1 (and positive)
xType=1;
else % and it is not 0/1 (and negative)
xType=11;
end
else
% now find some more info about x
maxx=max(x);
minx=min(x);
rangex=maxx-minx+1;
if (rangex==1) % only one symbol
if (maxx==0) | (maxx==1) % and it is 0/1
xType=8;
elseif (maxx>1) % and it is not 0/1 (and positive)
xType=2;
else % and it is not 0/1 (and negative)
xType=10;
end
elseif (minx == 0) & (maxx == 1) % a binary sequence
xType=7;
elseif (minx >= 0) & (maxx <= 1000)
xType=3;
elseif (minx >= 0)
xType=5;
elseif (minx >= -1000) & (maxx <= 1000)
xType=4;
else
xType=6;
end
end % if (L==0)
if Display >= 2
disp([Mfile,': sequence ',int2str(num),' has xType=',int2str(xType)]);
end
%
if sum(xType==[4,6]) % negative values are present
I=find(x); % non-zero entries in x
Sg=(sign(x(I))+1)/2; % the signs will be needed later, 0/1
x=abs(x);
end
if sum(xType==[5,6]) % we take the logarithms of the values
I=find(x); % non-zero entries in x
xa=x; % additional bits
x(I)=floor(log2(x(I)));
xa(I)=xa(I)-2.^x(I);
x(I)=x(I)+1;
end
% now do the coding of this sequence
PutS(xType,TypeS,TypeC);
if (xType==1) % one symbol and x=x(1)>1
PutVLIC(x-2);
elseif (xType==2) % L>1 but only one symbol, x(1)=x(2)=...=x(L)>1
PutVLIC(L-2);
PutVLIC(x(1)-2);
elseif sum(xType==[3,4,5,6]) % now 'normalized' sequences: 0 <= x(i) <= 1000
PutVLIC(L-2);
M=max(x);
PutN(M,1000); % some bits for M
% initialize model
T=[ones(M+2,1);0];
Tu=flipud((-1:(M+1))'); % (-1) since ESC never is used in Tu context
% and code the symbols in the sequence x
for l=1:L
sc=T(1);
m=x(l);
hc=T(m+1);lc=T(m+2);
if hc==lc % unused symbol, code ESC symbol first
hc=T(M+2);lc=T(M+3);
EncodeSymbol; % code escape with T table
sc=Tu(1);hc=Tu(m+1);lc=Tu(m+2); % symbol with Tu table
Tu(1:(m+1))=Tu(1:(m+1))-1; % update Tu table
end
EncodeSymbol; % code actual symbol with T table (or Tu table)
% update T table, MUST be identical in Encode and Decode
% this avoid very large values in T even if sequence is very long
T(1:(m+1))=T(1:(m+1))+1;
if (rem(l,5000)==0)
dT=T(1:(M+2))-T(2:(M+3));
dT=floor(dT*7/8+1/8);
for m=(M+2):(-1):1; T(m)=T(m+1)+dT(m); end;
end
end % for l=1:L
% this end the "elseif sum(xType==[3,4,5,6])"-clause
elseif (xType==7) % L>1 and 0 <= x(i) <= 1
PutVLIC(L-2);
EncodeBin(x,L); % code this sequence a special way
elseif (xType==8) % L>1 and 0 <= x(1)=x(2)=...=x(L) <= 1
PutVLIC(L-2);
PutABit(x(1));
elseif (xType==9) % L=1 and 0 <= x(1) <= 1
PutABit(x(1));
elseif (xType==10) % L>1 and x(1)=x(2)=...=x(L) <= -1
PutVLIC(L-2);
PutVLIC(-1-x(1));
elseif (xType==11) % L=1 and x(1) <= -1
PutVLIC(-1-x);
end % if (xType==1)
% additional information should be coded as well
if 0 % first the way it is not done any more
if sum(xType==[4,6]) % sign must be stored
for i=1:length(Sg); PutABit(Sg(i)); end;
end
if sum(xType==[5,6]) % additional bits must be stored
for i=1:L
for ii=(x(i)-1):(-1):1
PutABit(bitget(xa(i),ii));
end
end
end
else % this is how we do it
if sum(xType==[4,6]) % sign must be stored
EncodeBin(Sg,length(I)); % since length(I)=length(Sg)
end
if sum(xType==[5,6]) % additional bits must be stored
b=zeros(sum(x)-length(I),1); % number of additional bits
bi=0;
for i=1:L
for ii=(x(i)-1):(-1):1
bi=bi+1;
b(bi)=bitget(xa(i),ii);
end
end
if (bi~=(sum(x)-length(I)))
error([Mfile,': logical error, bi~=(sum(x)-length(I)).']);
end
EncodeBin(b,bi); % since bi=(sum(x)-length(I))
end
end
%
EndPos=Byte*8-BitPos+ub; % used for counting bits
bits=EndPos-StartPos;
Res(num,1)=L;
Res(num,2)=0;
Res(num,3)=bits;
if L>0; Res(num,4)=bits/L; else Res(num,4)=bits; end;
if Display
% disp([Mfile,': Sequence ',int2str(num),' of ',int2str(L),' symbols ',...
% 'encoded using ',int2str(bits),' bits.']);
end
end % for num=1:NumOfX
% flush the arithmetic coder
PutBit(bitget(low,K-1));
ub=ub+1;
while ub>0
PutBit(~bitget(low,K-1));
ub=ub-1;
end
% flush is finished
y=y(1:Byte);
varargout(1) = {y};
if (nargout >= 2)
% now calculate results for the total
Res(NumOfX+1,1)=Ltot;
Res(NumOfX+1,2)=0;
Res(NumOfX+1,3)=Byte*8;
if (Ltot>0); Res(NumOfX+1,4)=Byte*8/Ltot; else Res(NumOfX+1,4)=Byte*8; end;
varargout(2) = {Res};
end
end % if Encode
if Decode
for k=1:K
code=code*2;
code=code+GetBit; % read bits into code
end
NumOfX=GetVLIC; % first read number of sequences
xC=cell(NumOfX,1);
for num=1:NumOfX
% find what kind of sequenqe we have, xType, stored first in sequence
xType=GetS(TypeS,TypeC);
% now decode the different kind of sequences, each the way it was stored
if (xType==0) % empty sequence, no more symbols coded
x=[];
elseif (xType==1) % one symbol and x=x(1)>1
x=GetVLIC+2;
elseif (xType==2) % L>1 but only one symbol, x(1)=x(2)=...=x(L)>1
L=GetVLIC+2;
x=ones(L,1)*(GetVLIC+2);
elseif sum(xType==[3,4,5,6]) % now 'normalized' sequences: 0 <= x(i) <= 1000
L=GetVLIC+2;
x=zeros(L,1);
M=GetN(1000); % M is max(x)
% initialize model
T=[ones(M+2,1);0];
Tu=flipud((-1:(M+1))'); % (-1) since ESC never is used in Tu context
% and decode the symbols in the sequence x
for l=1:L
sc=T(1);
range=high-low+1;
count=floor(( (code-low+1)*sc-1 )/range);
m=2; while (T(m)>count); m=m+1; end;
hc=T(m-1);lc=T(m);m=m-2;
RemoveSymbol;
if (m>M) % decoded ESC symbol, find symbol from Tu table
sc=Tu(1);range=high-low+1;
count=floor(( (code-low+1)*sc-1 )/range);
m=2; while (Tu(m)>count); m=m+1; end;
hc=Tu(m-1);lc=Tu(m);m=m-2;
RemoveSymbol;
Tu(1:(m+1))=Tu(1:(m+1))-1; % update Tu table
end
x(l)=m;
% update T table, MUST be identical in Encode and Decode
% this avoid very large values in T even if sequence is very long
T(1:(m+1))=T(1:(m+1))+1;
if (rem(l,5000)==0)
dT=T(1:(M+2))-T(2:(M+3));
dT=floor(dT*7/8+1/8);
for m=(M+2):(-1):1; T(m)=T(m+1)+dT(m); end;
end
end % for l=1:L
% this end the "elseif sum(xType==[3,4,5,6])"-clause
elseif (xType==7) % L>1 and 0 <= x(i) <= 1
L=GetVLIC+2;
x=DecodeBin(L); % decode this sequence a special way
elseif (xType==8) % L>1 and 0 <= x(1)=x(2)=...=x(L) <= 1
L=GetVLIC+2;
x=ones(L,1)*GetABit;
elseif (xType==9) % L=1 and 0 <= x(1) <= 1
x=GetABit;
elseif (xType==10) % L>1 and x(1)=x(2)=...=x(L) <= -1
L=GetVLIC+2;
x=ones(L,1)*(-1-GetVLIC);
elseif (xType==11) % L=1 and x(1) <= -1
x=(-1-GetVLIC);
end % if (xType==0)
% additional information should be decoded as well
L=length(x);
I=find(x);
if 0
if sum(xType==[4,6]) % sign must be retrieved
Sg=zeros(size(I));
for i=1:length(I); Sg(i)=GetABit; end; % and the signs (0/1)
Sg=Sg*2-1; % (-1/1)
end
if sum(xType==[5,6]) % additional bits must be retrieved
xa=zeros(L,1);
for i=1:L
for ii=2:x(i)
xa(i)=2*xa(i)+GetABit;
end
end
x(I)=2.^(x(I)-1);
x=x+xa;
end
else
if sum(xType==[4,6]) % sign must be retrieved
Sg=DecodeBin(length(I)); % since length(I)=length(Sg)
Sg=Sg*2-1; % (-1/1)
end
if sum(xType==[5,6]) % additional bits must be retrieved
bi=sum(x)-length(I); % number of additional bits
b=DecodeBin(bi);
bi=0;
xa=zeros(L,1);
for i=1:L
for ii=2:x(i)
bi=bi+1;
xa(i)=2*xa(i)+b(bi);
end
end
x(I)=2.^(x(I)-1);
x=x+xa;
end
end
if sum(xType==[4,6]) % sign must be used
x(I)=x(I).*Sg;
end
% now x is the retrieved sequence
xC{num}=x;
end % for num=1:NumOfX
varargout(1) = {xC};
end
return % end of main function, Arith07
%----------------------------------------------------------------------
%----------------------------------------------------------------------
% --- The functions for binary sequences: EncodeBin and DecodeBin -------
% These function may call themselves recursively
function EncodeBin(x,L)
global y Byte BitPos
global high low range ub hc lc sc K code
Display=0;
x=x(:);
if (length(x)~=L); error('EncodeBin: length(x) not equal L.'); end;
% first we try some different coding methods to find out which one
% that might do best. Many more methods could have been tried, for
% example methods to check if x is a 'byte' sequence, or if the bits
% are grouped in other ways. The calling application is the best place
% to detect such dependencies, since it will (might) know the process and
% possible also its statistical (or deterministic) properties.
% Here we just check some few coding methods: direct, split, diff, diff+split
% The main variables used for the different methods are:
% direct: x, I, J, L11, b0
% split: x is split into x1 and x2, L1, L2, b1 is bits needed
% diff: x3 is generated from x, I3, J3 L31, b2
% diff+split: x3 is split into x4 and x5, L4, L5, b3
%
MetS=[0,1,2,3]; % the different methods, direct, split, diff, diff+split
MetC=[9,3,3,1]; % and the counts (which gives the probabilities)
% first set how many bits needed to code the method
b0=log2(sum(MetC))-log2(MetC(1));
b1=log2(sum(MetC))-log2(MetC(2));
b2=log2(sum(MetC))-log2(MetC(3));
b3=log2(sum(MetC))-log2(MetC(4));
I=find(x(1:(L-1))==1); % except last element in x
J=find(x(1:(L-1))==0);
L11=length(I);
% perhaps is 'entropy' interesting
% N1=L11+x(L);
% N0=L-N1;
% b=N1*log2(L/N1)+N0*log2(L/N0);
% disp(['L=',int2str(L),', N1=',int2str(N1),', (e)bits=',num2str(b)]);
b0=b0+BitEst(L,L11+x(L)); % bits needed for the sequence without splitting
if Display
disp(['EncodeBin: x of length ',int2str(L),' and ',int2str(L11+x(L)),...
' ones (p=',num2str((L11+x(L))/L,'%1.3f'),...
') can be coded by ',num2str(b0,'%6.0f'),' bits.']);
end
% diff with a binary sequence is to indicate wether or not a symbol is
% the same as preceeding symbol or not, x(0) is assumed to be '0' (zero).
% This is the DPCM coding scheme on a binary sequence
x3=abs(x-[0;x(1:(L-1))]);
I3=find(x3(1:(L-1))==1); % except last element in x3
J3=find(x3(1:(L-1))==0);
L31=length(I3);
b2=b2+BitEst(L,L31+x3(L)); % bits needed for the sequence without splitting
if Display
disp(['EncodeBin: diff x, L=',int2str(L),' gives ',int2str(L31+x3(L)),...
' ones (p=',num2str((L31+x3(L))/L,'%1.3f'),...
') can be coded by ',num2str(b2,'%6.0f'),' bits.']);
end
%
if (L>40)
% only now we try to split the sequences x and x3
if (L11>3) & ((L-L11)>3)
% try to split x into x1 and x2, depending on previous symbol
if L11<(L/2)
x1=x(I+1);
x2=[x(1);x(J+1)];
L1=L11;L2=L-L11;
else
x1=[x(1);x(I+1)];
x2=x(J+1);
L1=L11+1;L2=L-L11-1;
end
b11=BitEst(L1,length(find(x1))); % bits needed for x1
b12=BitEst(L2,length(find(x2))); % bits needed for x2
% b1 is bits to code: Method, L11, x1 and x2
b1=b1+log2(L)+b11+b12;
if Display
disp(['EncodeBin, x -> x1+x2: lengths are ',int2str(L1),'+',int2str(L2),...
' bits are ',num2str(b11,'%6.0f'),'+',num2str(b12,'%6.0f'),...
'. Total is ',num2str(b1,'%6.0f'),' bits.']);
end
else
b1=b0+1; % just to make this larger
end
if (L31>3) & ((L-L31)>3)
% try to split x3 into x4 and x5, depending on previous symbol
if L31<(L/2)
x4=x3(I3+1);
x5=[x3(1);x3(J3+1)];
L4=L31;L5=L-L31;
else
x4=[x3(1);x3(I3+1)];
x5=x3(J3+1);
L4=L31+1;L5=L-L31-1;
end
b31=BitEst(L4,length(find(x4))); % bits needed for x4
b32=BitEst(L5,length(find(x5))); % bits needed for x5
% b3 is bits to code: Method, L31, x4 and x5
b3=b3+log2(L)+b31+b32;
if Display
disp(['EncodeBin, diff x -> x4+x5: lengths are ',int2str(L4),'+',int2str(L5),...
' bits are ',num2str(b31,'%6.0f'),'+',num2str(b32,'%6.0f'),...
'. Total is ',num2str(b3,'%6.0f'),' bits.']);
end
else
b3=b2+1; % just to make this larger
end
else
b1=b0+1; % just to make this larger
b3=b2+1; % just to make this larger
end
% now code x by the best method of those investigated
[b,MetI]=min([b0,b1,b2,b3]);
MetI=MetI-1;
PutS(MetI,MetS,MetC); % code which method to use
%
if MetI==0
% code the sequence x
N1=L11+x(L);
N0=L-N1;
PutN(N1,L); % code N1, 0<=N1<=L
for n=1:L
if ~(N0*N1); break; end;
PutS(x(n),[0,1],[N0,N1]); % code x(n)
N0=N0-1+x(n);N1=N1-x(n); % update model (of rest of the sequence)
end
elseif MetI==1
% code x1 and x2
clear x4 x5 x3 x I3 J3 I J
PutN(L11,L-1); % 0<=L11<=(L-1)
EncodeBin(x1,L1);
EncodeBin(x2,L2);
elseif MetI==2
% code the sequence x3
N1=L31+x3(L);
N0=L-N1;
PutN(N1,L); % code N1, 0<=N1<=L
for n=1:L
if ~(N0*N1); break; end;
PutS(x3(n),[0,1],[N0,N1]); % code x3(n)
N0=N0-1+x3(n);N1=N1-x3(n); % update model (of rest of the sequence)
end
elseif MetI==3
% code x4 and x5
clear x1 x2 x3 x I3 J3 I J
PutN(L31,L-1); % 0<=L31<=(L-1)
EncodeBin(x4,L4);
EncodeBin(x5,L5);
end
return % end of EncodeBin
function x = DecodeBin(L)
global y Byte BitPos
global high low range ub hc lc sc K code
% these must be as in EncodeBin
MetS=[0,1,2,3]; % the different methods, direct, split, diff, diff+split
MetC=[9,3,3,1]; % and the counts (which gives the probabilities)
MetI=GetS(MetS,MetC); % encode which method to use
if (MetI==1) | (MetI==3) % a split was done
L11=GetN(L-1); % 0<=L11<=(L-1)
if L11<(L/2)
L1=L11;L2=L-L11;
else
L1=L11+1;L2=L-L11-1;
end
x1=DecodeBin(L1);
x2=DecodeBin(L2);
% build sequence x from x1 and x2
x=zeros(L,1);
if L11<(L/2)
x(1)=x2(1);
n1=0;n2=1; % index for the last in x1 and x2
else
x(1)=x1(1);
n1=1;n2=0; % index for the last in x1 and x2
end
for n=2:L
if (x(n-1))
n1=n1+1;
x(n)=x1(n1);
else
n2=n2+1;
x(n)=x2(n2);
end
end
else % no split
N1=GetN(L);
N0=L-N1;
x=zeros(L,1);
for n=1:L
if (N0==0); x(n:L)=1; break; end;
if (N1==0); break; end;
x(n)=GetS([0,1],[N0,N1]); % decode x(n)
N0=N0-1+x(n);N1=N1-x(n); % update model (of rest of the sequence)
end
end
if (MetI==2) | (MetI==3) % x is diff coded
for n=2:L
x(n)=x(n-1)+x(n);
end
x=rem(x,2);
end
return % end of DecodeBin
% ------- Other subroutines ------------------------------------------------
% Functions to write and read a Variable Length Integer Code word
% This is a way of coding non-negative integers that uses fewer
% bits for small integers than for large ones. The scheme is:
% '00' + 4 bit - integers from 0 to 15
% '01' + 8 bit - integers from 16 to 271
% '10' + 12 bit - integers from 272 to 4367
% '110' + 16 bit - integers from 4368 to 69903
% '1110' + 20 bit - integers from 69940 to 1118479
% '1111' + 24 bit - integers from 1118480 to 17895695
% not supported - integers >= 17895696 (=2^4+2^8+2^12+2^16+2^20+2^24)
function PutVLIC(N)
global y Byte BitPos
global high low range ub hc lc sc K code
if (N<0)
error('Arith06-PutVLIC: Number is negative.');
elseif (N<16)
PutABit(0);PutABit(0);
for (i=4:-1:1); PutABit(bitget(N,i)); end;
elseif (N<272)
PutABit(0);PutABit(1);
N=N-16;
for (i=8:-1:1); PutABit(bitget(N,i)); end;
elseif (N<4368)
PutABit(1);PutABit(0);
N=N-272;
for (i=12:-1:1); PutABit(bitget(N,i)); end;
elseif (N<69940)
PutABit(1);PutABit(1);PutABit(0);
N=N-4368;
for (i=16:-1:1); PutABit(bitget(N,i)); end;
elseif (N<1118480)
PutABit(1);PutABit(1);PutABit(1);PutABit(0);
N=N-69940;
for (i=20:-1:1); PutABit(bitget(N,i)); end;
elseif (N<17895696)
PutABit(1);PutABit(1);PutABit(1);PutABit(1);
N=N-1118480;
for (i=24:-1:1); PutABit(bitget(N,i)); end;
else
error('Arith06-PutVLIC: Number is too large.');
end
return
function N=GetVLIC
global y Byte BitPos
global high low range ub hc lc sc K code
N=0;
if GetABit
if GetABit
if GetABit
if GetABit
for (i=1:24); N=N*2+GetABit; end;
N=N+1118480;
else
for (i=1:20); N=N*2+GetABit; end;
N=N+69940;
end
else
for (i=1:16); N=N*2+GetABit; end;
N=N+4368;
end
else
for (i=1:12); N=N*2+GetABit; end;
N=N+272;
end
else
if GetABit
for (i=1:8); N=N*2+GetABit; end;
N=N+16;
else
for (i=1:4); N=N*2+GetABit; end;
end
end
return
% Aritmetic coding of a number or symbol x, the different symbols (numbers)
% are given in the array S, and the counts (which gives the probabilities)
% are given in C, an array of same length as S.
% x must be a number in S.
% example with symbols 0 and 1, where probabilites are P{0}=0.8, P{1}=0.2
% PutS(x,[0,1],[4,1]) and x=GetS([0,1],[4,1])
% An idea: perhaps the array S should be only in the calling function, and
% that it do not need to be passed as an argument at all.
% Hint: it may be best to to the most likely symbols (highest counts) in
% the beginning of the tables S and C.
function PutS(x,S,C)
global y Byte BitPos
global high low range ub hc lc sc K code
N=length(S); % also length(C)
m=find(S==x); % m is a single value, index in S, 1 <= m <= N
sc=sum(C);
lc=sc-sum(C(1:m));
hc=lc+C(m);
% disp(['PutS: lc=',int2str(lc),' hc=',int2str(hc),' sc=',int2str(sc),' m=',int2str(m)]);
EncodeSymbol; % code the bit
return
function x=GetS(S,C)
global y Byte BitPos
global high low range ub hc lc sc K code
range=high-low+1;
sc=sum(C);
count=floor(( (code-low+1)*sc-1 )/range);
m=1;
lc=sc-C(1);
while (lc>count); m=m+1; lc=lc-C(m); end;
hc=lc+C(m);
x=S(m);
% disp(['GetS: lc=',int2str(lc),' hc=',int2str(hc),' sc=',int2str(sc),' m=',int2str(m)]);
RemoveSymbol;
return
% Aritmetic coding of a number x, 0<=x<=N, P{0}=P{1}=...=P{N}=1/(N+1)
function PutN(x,N) % 0<=x<=N
global y Byte BitPos
global high low range ub hc lc sc K code
sc=N+1;
lc=x;
hc=x+1;
EncodeSymbol; % code the bit
return
function x=GetN(N)
global y Byte BitPos
global high low range ub hc lc sc K code
range=high-low+1;
sc=N+1;
x=floor(( (code-low+1)*sc-1 )/range);
hc=x+1;lc=x;
RemoveSymbol;
return
% Aritmetic coding of a bit, probability is 0.5 for both 1 and 0
function PutABit(Bit)
global y Byte BitPos
global high low range ub hc lc sc K code
sc=2;
if Bit
hc=1;lc=0;
else
hc=2;lc=1;
end
EncodeSymbol; % code the bit
return
function Bit=GetABit
global y Byte BitPos
global high low range ub hc lc sc K code
range=high-low+1;
sc=2;
count=floor(( (code-low+1)*sc-1 )/range);
if (1>count)
Bit=1;hc=1;lc=0;
else
Bit=0;hc=2;lc=1;
end
RemoveSymbol;
return;
% The EncodeSymbol function encode a symbol, (correspond to encode_symbol page 149)
function EncodeSymbol
global y Byte BitPos
global high low range ub hc lc sc K code
range=high-low+1;
high=low+floor(((range*hc)/sc)-1);
low=low+floor((range*lc)/sc);
while 1 % for loop on page 149
if bitget(high,K)==bitget(low,K)
PutBit(bitget(high,K));
while ub > 0
PutBit(~bitget(high,K));
ub=ub-1;
end
elseif (bitget(low,K-1) & (~bitget(high,K-1)))
ub=ub+1;
low=bitset(low,K-1,0);
high=bitset(high,K-1,1);
else
break
end
low=bitset(low*2,K+1,0);
high=bitset(high*2+1,K+1,0);
end
return
% The RemoveSymbol function removes (and fill in new) bits from
% file, y, to code
function RemoveSymbol
global y Byte BitPos
global high low range ub hc lc sc K code
range=high-low+1;
high=low+floor(((range*hc)/sc)-1);
low=low+floor((range*lc)/sc);
while 1
if bitget(high,K)==bitget(low,K)
% do nothing (shift bits out)
elseif (bitget(low,K-1) & (~bitget(high,K-1)))
code=bitset(code,K-1,~bitget(code,K-1)); % switch bit K-1
low=bitset(low,K-1,0);
high=bitset(high,K-1,1);
else
break
end
low=bitset(low*2,K+1,0);
high=bitset(high*2+1,K+1,0);
code=bitset(code*2+GetBit,K+1,0);
end
if (low > high); error('low > high'); end;
return
% Functions to write and read a Bit
function PutBit(Bit)
global y Byte BitPos
BitPos=BitPos-1;
if (~BitPos); Byte=Byte+1; BitPos=8; end;
y(Byte) = bitset(y(Byte),BitPos,Bit);
return
function Bit=GetBit
global y Byte BitPos
BitPos=BitPos-1;
if (~BitPos); Byte=Byte+1; BitPos=8; end;
Bit=bitget(y(Byte),BitPos);
return
function b=BitEst(N,N1);
if (N1>(N/2)); N1=N-N1; end;
N0=N-N1;
if (N>1000)
b=(N+3/2)*log2(N)-(N0+1/2)*log2(N0)-(N1+1/2)*log2(N1)-1.3256;
elseif (N1>20)
b=(N+3/2)*log2(N)-(N0+1/2)*log2(N0)-(N1+1/2)*log2(N1)-0.020984*log2(log2(N))-1.25708;
else
b=log2(N+1)+sum(log2(N-(0:(N1-1))))-sum(log2(N1-(0:(N1-1))));
end
return