-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlora_xbrl_tuning.py
206 lines (157 loc) · 6.06 KB
/
lora_xbrl_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
'''
Input: Sentence ---> Target: Tag Doc
'''
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, default_data_collator, get_linear_schedule_with_warmup
from peft import get_peft_config, get_peft_model, LoraConfig, get_peft_model_state_dict, PrefixTuningConfig, TaskType
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
import os
import torch
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from datasets import Dataset
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
import warnings
warnings.filterwarnings("ignore")
from wordsegment import load, segment
load()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# os.environ["CUDA_VISIBLE_DEVICES"] = "3"
device = "cuda"
model_name_or_path = "google/flan-t5-xl"
tokenizer_name_or_path = "google/flant5-xl"
text_column = "sentence"
label_column = "text_label"
max_length = 128
batch_size = 8
print("all package imported")
class TrainDataset(Dataset):
"""Tourism Dataset."""
def __init__(self, csv_file, root_dir, transform=None):
"""
Arguments:
csv_file (string): Path to the csv file with annotations.
"""
self.tacos_df = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
self.sentences = self.tacos_df['input_text']
# self.labels = self.tacos_df['Sentiment']
self.text_labels = self.tacos_df['Tag_Doc']
def __len__(self):
return len(self.tacos_df)
def __getitem__(self, idx):
sentence = self.sentences[idx]
# label = self.labels[idx]
text_label = self.text_labels[idx]
print('text label', text_label)
sample = {'sentence': sentence, 'text_label': text_label}
return sample
class TestDataset(Dataset):
"""Tourism Dataset."""
def __init__(self, csv_file, root_dir, transform=None):
"""
Arguments:
csv_file (string): Path to the csv file with annotations.
"""
self.tacos_df = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
self.sentences = self.tacos_df['input_text']
# self.labels = self.tacos_df['Sentiment']
self.text_labels = self.tacos_df['Tag_Doc']
def __len__(self):
return len(self.tacos_df)
xbrl_dataset_train = TrainDataset(csv_file='./data/consolidated_xbrl_train.csv',
root_dir='./')
xbrl_dataset_test = TestDataset(csv_file='./data/consolidated_xbrl_test.csv', root_dir='./')
dataset_train = Dataset.from_dict(
{"sentence": list(xbrl_dataset_train.sentences), "text_label": list(xbrl_dataset_train.text_labels)})
dataset_test = Dataset.from_dict(
{"sentence": list(xbrl_dataset_test.sentences), "text_label": list(xbrl_dataset_test.text_labels)})
print(dataset_train["text_label"])
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, cache_dir='/')
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[label_column]
model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt")
labels = tokenizer(targets, max_length=30, padding="max_length", truncation=True, return_tensors="pt")
labels = labels["input_ids"]
labels[labels == tokenizer.pad_token_id] = -100
model_inputs["labels"] = labels
return model_inputs
processed_datasets_train = dataset_train.map(
preprocess_function,
batched=True,
num_proc=1,
remove_columns=['sentence', 'text_label'],
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
processed_datasets_test = dataset_test.map(
preprocess_function,
batched=True,
num_proc=1,
remove_columns=['sentence', 'text_label'],
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
train_dataset = processed_datasets_train
eval_dataset = processed_datasets_test
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
lora_config = LoraConfig(r=2, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none",
task_type=TaskType.SEQ_2_SEQ_LM)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path, cache_dir='/NS/ssdecl/work', device_map='auto')
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
"trainable params: 983040 || all params: 738651136 || trainable%: 0.13308583065659835"
output_dir = "lora-flan-t5-xl"
# Define training args
training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
auto_find_batch_size=True,
learning_rate=5e-4, # higher learning rate
num_train_epochs=5,
logging_dir=f"{output_dir}/logs",
logging_strategy="steps",
logging_steps=500,
save_strategy="no",
)
# Create Trainer instance
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
# train model
trainer.train()
peft_model_id = "lora_flan_xl_model_sent_tag_doc"
trainer.model.save_pretrained(peft_model_id)
tokenizer.save_pretrained(peft_model_id)
model.eval()
eval_preds = []
for step, batch in enumerate(tqdm(eval_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
eval_preds.extend \
(tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True))
correct = 0
total = 0
f1 = open('./lora_prediction.txt', 'w')
for pred, true in zip(eval_preds, dataset_test["text_label"]):
print(pred, true)
f1.write('True: ' + true + ' Pred: ' + pred)
f1.write('\n')
if pred.strip() == true.strip():
correct += 1
total += 1
f1.close()
accuracy = correct / total * 100
print(f"{accuracy=} % on the evaluation dataset")
print("---Completed The Task -----")