-
Notifications
You must be signed in to change notification settings - Fork 58
/
evaluate.py
executable file
·255 lines (229 loc) · 9.26 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#
# Copyright 2019 Subhojeet Pramanik, Aman Husain, Priyanka Agrawal
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ======================================================================
"""
Authors: Subhojeet Pramanik
OmniNet evalution script.
"""
import argparse
import os
import torch
import pickle
import time
import json
import numpy as np
import glob
import libs.omninet as omninet
from libs.utils import dataloaders as dl
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import libs.omninet.routines as r
from libs.omninet.util import ScheduledOptim
from torch.optim.adam import Adam
import random
from nltk.tokenize import word_tokenize
import sys
from tqdm import tqdm
from PIL import Image
from libs.utils.train_util import *
from libs.utils.cocoapi.coco import COCO
from libs.utils.vqa.vqa import VQA
from libs.utils.vqa.vqaEval import VQAEval
from libs.utils.cocoapi.eval import COCOEvalCap
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from libs.utils.bleu import compute_bleu
coco_images = 'data/coco/train_val'
caption_dir = 'data/coco'
vqa_dir = 'data/vqa'
hmdb_data_dir='data/hmdb'
hmdb_process_dir='data/hmdbprocess'
model_save_path = 'checkpoints'
dropout = 0.5
image_height = 224
image_width = 224
class ImageDataset(Dataset):
def __init__(self, img_list,transform):
self.img_list=img_list
self.N=len(self.img_list)
self.transform=transform
def __len__(self):
return self.N
def __getitem__(self, idx):
img = Image.open(self.img_list[idx])
img = img.convert('RGB')
if self.transform is not None:
img = self.transform(img)
else:
img = transforms.ToTensor()(img).convert("RGB")
return img
def vqa_evaluate(model,batch_size):
predictions=[]
vqa_val_ques=os.path.join(vqa_dir,'v2_OpenEnded_mscoco_val2014_questions.json')
vqa_val_ann=os.path.join(vqa_dir,'v2_mscoco_val2014_annotations.json')
vocab_file=os.path.join('conf/vqa_vocab.pkl')
with open(vocab_file,'rb') as f:
ans_to_id,id_to_ans=pickle.loads(f.read())
vqa = VQA(annotation_file=vqa_val_ann, question_file=vqa_val_ques)
questions=[]
img_list=[]
ques_ids=[]
answers=[]
#Multiple choice answer evaluation
for q in vqa.questions['questions']:
img_list.append(os.path.join(coco_images, '%012d.jpg' % (q['image_id'])))
questions.append(q['question'])
ques_ids.append(q['question_id'])
answer = vqa.loadQA(q['question_id'])
answers.append(answer[0]['multiple_choice_answer'])
answers=np.array(answers)
#Validation transformations
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
val_tfms = transforms.Compose([
transforms.Resize(int(224*1.14)),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
val_dataset = ImageDataset(img_list,val_tfms)
val_dl= DataLoader(val_dataset, num_workers=8, batch_size=batch_size,
drop_last=False,pin_memory=True,shuffle=False)
counter=0
result_json=[]
for b in tqdm(val_dl):
imgs = b.cuda(0)
ques=questions[counter:counter+imgs.shape[0]]
preds,_,_ = r.vqa(model, imgs, ques, mode='predict',return_str_preds=True,num_steps=1)
preds=preds.reshape([-1]).cpu().numpy()
for p in preds:
result_json.append({'question_id':ques_ids[counter],'answer':id_to_ans[p]})
counter+=1
with open('results/vqa_prediction.json', 'w') as outfile:
json.dump(result_json, outfile)
#Evaluate the predictions
predictions=[]
vqaRes=vqa.loadRes('results/vqa_prediction.json',vqa_val_ques)
vqaEval = VQAEval(vqa, vqaRes, n=2) #n is precision of accuracy (number of places after decimal), default is 2
with open('results/vqa_prediction.json', 'r') as f:
json_ans = json.load(f)
for j in json_ans:
predictions.append(j['answer'])
predictions=np.array(predictions)
print(np.sum(predictions==answers)/predictions.shape[0])
# evaluate results
"""
If you have a list of question ids on which you would like to evaluate your results, pass it as a list to below function
By default it uses all the question ids in annotation file
"""
vqaEval.evaluate()
print('\n\nVQA Evaluation results')
print('-'*50)
# print accuracies
print("\n")
print("Overall Accuracy is: %.02f\n" %(vqaEval.accuracy['overall']))
print("Per Question Type Accuracy is the following:")
for quesType in vqaEval.accuracy['perQuestionType']:
print("%s : %.02f" %(quesType, vqaEval.accuracy['perQuestionType'][quesType]))
print("\n")
print("Per Answer Type Accuracy is the following:")
for ansType in vqaEval.accuracy['perAnswerType']:
print("%s : %.02f" %(ansType, vqaEval.accuracy['perAnswerType'][ansType]))
print("\n")
def coco_evaluate(model,batch_size):
predictions=[]
val_ann_file=os.path.join(caption_dir,'captions_val2017.json')
coco = COCO(val_ann_file)
img_ids=coco.getImgIds()
img_list=[]
for i in img_ids:
img_list.append(os.path.join(coco_images, '%012d.jpg' % (i)))
#Validation transformations
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
val_tfms = transforms.Compose([
transforms.Resize(int(224*1.14)),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
val_dataset = ImageDataset(img_list,val_tfms)
val_dl= DataLoader(val_dataset, num_workers=8, batch_size=batch_size,
drop_last=False,pin_memory=True,shuffle=False)
counter=0
result_json=[]
for b in tqdm(val_dl):
imgs = b.cuda(0)
preds,_,_ = r.image_caption(model, imgs, mode='predict',return_str_preds=True)
for p in preds:
result_json.append({'image_id':img_ids[counter],'caption':p})
counter+=1
with open('results/caption_prediction.json', 'w') as outfile:
json.dump(result_json, outfile)
#Evaluate the predictions
cocoRes=coco.loadRes('results/caption_prediction.json')
cocoEval = COCOEvalCap(coco, cocoRes)
# evaluate on a subset of images by setting
# cocoEval.params['image_id'] = cocoRes.getImgIds()
# please remove this line when evaluating the full validation set
cocoEval.params['image_id'] = cocoRes.getImgIds()
# evaluate results
# SPICE will take a few minutes the first time, but speeds up due to caching
cocoEval.evaluate()
print('\n\nCOCO Evaluation results')
print('-'*50)
for metric, score in cocoEval.eval.items():
print('%s: %.3f'%(metric, score))
def hmdb_evaluate(model,batch_size):
_,test_dl=dl.hmdb_batchgen(hmdb_data_dir,hmdb_process_dir,num_workers=8,batch_size=batch_size,
test_batch_size=batch_size,
clip_len=16)
correct=0
total=0
for b in tqdm(test_dl):
vid,labels = b
vid = vid.cuda(device=0)
preds,_,_ = r.hmdb(model, vid,mode='predict',return_str_preds=True,num_steps=1)
preds=preds.reshape([-1]).cpu().numpy()
labels=labels.reshape([-1]).cpu().numpy()
correct+=np.sum(preds==labels)
total+=labels.shape[0]
accuracy=(correct/total)*100
print('\n\nHMDB Evaluation results')
print('-'*50)
print('Accuracy: %f%%'%(accuracy))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OmniNet Evaluation script.')
parser.add_argument('task', help='Task for which to evaluate for.')
parser.add_argument('model_file', help='Model file to evaluate with.')
parser.add_argument('--batch_size', default=32, help='Batch size')
args = parser.parse_args()
torch.manual_seed(47)
task=args.task
batch_size=int(args.batch_size)
model_file=args.model_file
model = omninet.OmniNet(gpu_id=0)
model.restore_file(model_file)
model=model.to(0)
model=model.eval()
if task=='caption':
coco_evaluate(model,batch_size)
elif task=='vqa':
vqa_evaluate(model,batch_size)
elif task=='hmdb':
hmdb_evaluate(model, batch_size)
else:
print('Invalid task provided')