-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_mnist.py
469 lines (416 loc) · 21.7 KB
/
cnn_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import sys
import time
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
MNIST_URL = 'http://yann.lecun.com/exdb/mnist/'
WORK_DIRECTORY = 'data'
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
SEED = 66478 # Set to None for random seed.
EVAL_FREQUENCY = 100 # Number of steps between evaluations.
tf.app.flags.DEFINE_string("dataset", "mnist", "Choices: mnist, mnist550, mnist100, letters")
tf.app.flags.DEFINE_string("target", "label", "Choices: label, prob, prob_l2, logit, logitp")
tf.app.flags.DEFINE_integer("train_size", -1, "Size of training set. Set to negative to use all.")
tf.app.flags.DEFINE_integer("val_size", -1, "Size of validation set. Set to negative to use all.")
tf.app.flags.DEFINE_integer("test_size", -1, "Size of testing set. Set to negative to use all")
tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs.")
tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size at training.")
tf.app.flags.DEFINE_integer("eval_batch_size", 512, "Batch size at evaluation.")
tf.app.flags.DEFINE_integer("num_lr_stages", 4, "Number of different learning rate.")
tf.app.flags.DEFINE_integer("train_ver", 0, "Training set version.")
tf.app.flags.DEFINE_float("init_lr", 0.01, "Initial learning rate.")
tf.app.flags.DEFINE_float("lr_decay", 0.1, "Learning rate decay.")
tf.app.flags.DEFINE_string("load_logit_from", "", "File name under data/ for loading logits.")
tf.app.flags.DEFINE_string("save_logit_to", "", "File name under data/ for saving/loading logits.")
tf.app.flags.DEFINE_string("load_prob_from", "", "File name under data/ for loading probs.")
tf.app.flags.DEFINE_string("save_prob_to", "", "File name under data/ for saving/loading probs.")
tf.app.flags.DEFINE_string("load_model_from", "", "File name under data/ for loading model.")
tf.app.flags.DEFINE_string("save_model_to", "", "File name under data/ for saving model.")
tf.app.flags.DEFINE_boolean("load_full_model", False, "Load all layers incl. classification if True")
FLAGS = tf.app.flags.FLAGS
def maybe_download(filename):
"""Download MNIST from Yann's website, unless it's already here."""
if not tf.gfile.Exists(WORK_DIRECTORY):
tf.gfile.MakeDirs(WORK_DIRECTORY)
filepath = os.path.join(WORK_DIRECTORY, filename)
if not tf.gfile.Exists(filepath):
filepath, _ = urllib.request.urlretrieve(MNIST_URL + filename, filepath)
with tf.gfile.GFile(filepath) as f:
size = f.Size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath
def extract_data(filename, num_images, offset=0):
"""Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
print('Extracting %s (offset=%d)' % (filename, offset))
with gzip.open(filename) as bytestream:
bytestream.seek(16 + IMAGE_SIZE * IMAGE_SIZE * offset)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, 1)
return data
def extract_labels(filename, num_images, offset=0):
"""Extract the labels into a vector of int64 label IDs."""
print('Extracting %s (offset=%d)' % (filename, offset))
with gzip.open(filename) as bytestream:
bytestream.seek(8 + offset)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
return labels
def extract_logits(filename, num_images=-1, offset=0):
"""Extract the logits or posteriors into a 2D tensor with shape (n_images, n_classes)"""
filepath = os.path.join(WORK_DIRECTORY, filename)
print('Extracting %s (offset=%d)' % (filepath, offset))
logits = numpy.load(filepath)
if num_images != -1:
logits = logits[offset:offset + num_images, :NUM_LABELS]
else:
logits = logits[offset:, :NUM_LABELS]
return logits
def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and sparse labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == labels) /
predictions.shape[0])
def tf_logit(p):
return tf.log(p + 1e-12) - tf.log(1 - p + 1e-12)
# Saves memory and enables this to run on smaller GPUs.
def eval_in_batches(target, data_node, data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < FLAGS.eval_batch_size:
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in xrange(0, size, FLAGS.eval_batch_size):
end = begin + FLAGS.eval_batch_size
if end <= size:
predictions[begin:end, :] = sess.run(
target,
feed_dict={data_node: data[begin:end, ...]})
else:
batch_predictions = sess.run(
target,
feed_dict={data_node: data[-FLAGS.eval_batch_size:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions
def dataset(dataset_name):
if dataset_name == 'mnist':
# Get the data.
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 55000)
train_labels = extract_labels(train_labels_filename, 55000)
val_data = extract_data(train_data_filename, 5000, 55000)
val_labels = extract_labels(train_labels_filename, 5000, 55000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)
elif dataset_name == 'mnist550':
assert (FLAGS.train_ver < 100)
# Get the data.
train_data_filename = maybe_download('mnist-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('mnist-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 550, FLAGS.train_ver * 550)
train_labels = extract_labels(train_labels_filename, 550, FLAGS.train_ver * 550)
val_data = extract_data(train_data_filename, 5000, 55000)
val_labels = extract_labels(train_labels_filename, 5000, 55000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)
elif dataset_name == 'mnist100':
assert (FLAGS.train_ver < 550)
# Get the data.
train_data_filename = maybe_download('mnist-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('mnist-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 100, FLAGS.train_ver * 100)
train_labels = extract_labels(train_labels_filename, 100, FLAGS.train_ver * 100)
val_data = extract_data(train_data_filename, 5000, 55000)
val_labels = extract_labels(train_labels_filename, 5000, 55000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)
elif dataset_name == 'letters':
# Get the data.
letters_data_filename = maybe_download('letters-images-idx3-ubyte.gz')
letters_labels_filename = maybe_download('letters-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.
train_data = extract_data(letters_data_filename, 330000)
train_labels = extract_labels(letters_labels_filename, 330000)
val_data = extract_data(letters_data_filename, 26000, 330000)
val_labels = extract_labels(letters_labels_filename, 26000, 330000)
test_data = extract_data(letters_data_filename, 52000, 356000)
test_labels = extract_labels(letters_labels_filename, 52000, 356000)
else:
raise ValueError("Unknow dataset \"%s\"" % dataset_name)
return train_data, train_labels, val_data, val_labels, test_data, test_labels
def model(data, label=None, train=False):
"""The Model definition."""
tf.get_variable_scope().set_initializer(
tf.truncated_normal_initializer(stddev=0.1, seed=SEED))
var_list_wo_last = []
regularizers = 0
with tf.variable_scope('conv1'):
filters = tf.get_variable('filters', [5, 5, NUM_CHANNELS, 32])
biases = tf.get_variable('biases', [32],
initializer=tf.constant_initializer(0.0))
var_list_wo_last.append(filters)
var_list_wo_last.append(biases)
conv = tf.nn.conv2d(data,
filters,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
with tf.variable_scope('conv2'):
filters = tf.get_variable('filters', [5, 5, 32, 64])
biases = tf.get_variable('biases', [64],
initializer=tf.constant_initializer(0.1))
var_list_wo_last.append(filters)
var_list_wo_last.append(biases)
conv = tf.nn.conv2d(pool,
filters,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
pool_shape = pool.get_shape().as_list()
pool = tf.reshape(pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
with tf.variable_scope('fc1'):
filters = tf.get_variable('filters', [IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512])
biases = tf.get_variable('biases', [512],
initializer=tf.constant_initializer(0.1))
var_list_wo_last.append(filters)
var_list_wo_last.append(biases)
regularizers += (tf.nn.l2_loss(filters) + tf.nn.l2_loss(biases))
hidden = tf.nn.relu(tf.matmul(pool, filters) + biases)
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
with tf.variable_scope('fc2'):
filters = tf.get_variable('filters', [512, NUM_LABELS])
biases = tf.get_variable('biases', [NUM_LABELS],
initializer=tf.constant_initializer(0.1))
regularizers += (tf.nn.l2_loss(filters) + tf.nn.l2_loss(biases))
logits = tf.matmul(hidden, filters) + biases
# loss function
if label is None:
loss = 0
else:
if FLAGS.target == "prob":
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits, label))
elif FLAGS.target == "prob_l2":
loss = tf.nn.l2_loss(tf.nn.softmax(logits) - label) / FLAGS.batch_size
elif FLAGS.target == "logit":
loss = tf.nn.l2_loss(logits - label) / FLAGS.batch_size
elif FLAGS.target == "logitp":
loss = tf.nn.l2_loss(logits - tf_logit(label)) \
/ FLAGS.batch_size
else:
assert (FLAGS.target == "label")
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, label))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers
return logits, loss, var_list_wo_last
def main(argv=None): # pylint: disable=unused-argument
dataset_names = FLAGS.dataset.split('+')
train_data_list = []
train_labels_list = []
val_data_list = []
val_labels_list = []
test_data_list = []
test_labels_list = []
label_ranges = []
label_offset = 0
for dataset_name in dataset_names:
train_data, train_labels, val_data, val_labels, test_data, test_labels = dataset(dataset_name)
train_data_list.append(train_data)
train_labels_list.append(train_labels + label_offset)
val_data_list.append(val_data)
val_labels_list.append(val_labels + label_offset)
test_data_list.append(test_data)
test_labels_list.append(test_labels + label_offset)
label_ranges.append(max(max(train_labels), max(val_labels), max(test_labels)) + 1)
label_offset += label_ranges[-1]
train_data = numpy.concatenate(train_data_list, axis=0)
train_labels = numpy.concatenate(train_labels_list, axis=0)
val_data = numpy.concatenate(val_data_list, axis=0)
val_labels = numpy.concatenate(val_labels_list, axis=0)
test_data = numpy.concatenate(test_data_list, axis=0)
test_labels = numpy.concatenate(test_labels_list, axis=0)
train_data_0 = train_data
# shuffle data and labels
order_idxs_train = numpy.random.permutation(numpy.arange(train_labels.shape[0]))
train_data = train_data[order_idxs_train, :, :, :]
train_labels = train_labels[order_idxs_train]
order_idxs_val = numpy.random.permutation(numpy.arange(val_labels.shape[0]))
val_data = val_data[order_idxs_val, :, :, :]
val_labels = val_labels[order_idxs_val]
order_idxs_test = numpy.random.permutation(numpy.arange(test_labels.shape[0]))
test_data = test_data[order_idxs_test, :, :, :]
test_labels = test_labels[order_idxs_test]
global NUM_LABELS
NUM_LABELS = max(train_labels) + 1
# Reduce sample numbers if requested
if FLAGS.train_size >= 0:
train_data = train_data[:FLAGS.train_size, ...]
train_labels = train_labels[:FLAGS.train_size]
if FLAGS.val_size >= 0:
val_data = val_data[:FLAGS.val_size, ...]
val_labels = val_labels[:FLAGS.val_size]
if FLAGS.test_size >= 0:
test_data = test_data[:FLAGS.test_size, ...]
test_labels = test_labels[:FLAGS.test_size]
train_size = train_labels.shape[0]
val_size = val_labels.shape[0]
test_size = test_labels.shape[0]
num_epochs = FLAGS.num_epochs
# Training probs/logits
if FLAGS.target != "label":
if FLAGS.target == "logit" or FLAGS.target == "logitp":
train_logits = extract_logits(FLAGS.load_logit_from, train_size)
else:
assert (FLAGS.target == "prob" or FLAGS.target == "prob_l2")
train_logits = extract_logits(FLAGS.load_prob_from, train_size)
train_logits = train_logits[order_idxs_train, :]
train_logits = train_logits[:train_size]
gt_accuracy = numpy.sum((numpy.argmax(train_logits, 1) == train_labels).astype(numpy.int64)) \
/ train_labels.shape[0]
print("gt accuracy: %.2f%%" % (100 * float(gt_accuracy)))
# data & label nodes
train_data_node = tf.placeholder(
tf.float32,
shape=(FLAGS.batch_size, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
eval_data_node = tf.placeholder(
tf.float32,
shape=(FLAGS.eval_batch_size, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
if FLAGS.target == "label":
train_labels_node = tf.placeholder(tf.int64, shape=(FLAGS.batch_size,))
else:
train_labels_node = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, NUM_LABELS))
# Training computation: logits + cross-entropy loss.
with tf.variable_scope("cnn"):
logits, loss, var_list_wo_last = model(train_data_node, train_labels_node, True)
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0)
# Decay using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
FLAGS.init_lr, # Base learning rate.
batch * FLAGS.batch_size, # Current index into the dataset.
(train_size * FLAGS.num_epochs) // FLAGS.num_lr_stages, # Decay step.
FLAGS.lr_decay, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch)
# Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits)
# Predictions for the test and validation, which we'll compute less often.
with tf.variable_scope("cnn", reuse=True):
eval_logit, _, _ = model(eval_data_node)
eval_prediction = tf.nn.softmax(eval_logit)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf.initialize_all_variables().run()
print("Model initialized.")
# Restore variables from disk.
if len(FLAGS.load_model_from) != 0:
if FLAGS.load_full_model:
loader = tf.train.Saver()
else:
loader = tf.train.Saver(var_list=var_list_wo_last)
loader.restore(sess, os.path.join(WORK_DIRECTORY, FLAGS.load_model_from))
sess.run(tf.assign(batch, 0))
print("Model restored.")
# Loop through training steps.
if train_size > 0:
for step in xrange(int(num_epochs * train_size) // FLAGS.batch_size):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * FLAGS.batch_size) % (train_size - FLAGS.batch_size)
batch_data = train_data[offset:(offset + FLAGS.batch_size), ...]
batch_labels = train_labels[offset:(offset + FLAGS.batch_size)]
if FLAGS.target == 'label':
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph is should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_labels}
else:
batch_logits = train_logits[offset:(offset + FLAGS.batch_size), :]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph is should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_logits}
# Run the graph and fetch some of the nodes.
_, l, lr, predictions = sess.run(
[optimizer, loss, learning_rate, train_prediction],
feed_dict=feed_dict)
if step % EVAL_FREQUENCY == 0:
elapsed_time = time.time() - start_time
start_time = time.time()
print('Step %d (epoch %.2f), %.1f iters (%.1f images) per second' %
(step, float(step) * FLAGS.batch_size / train_size,
EVAL_FREQUENCY / elapsed_time, EVAL_FREQUENCY * FLAGS.batch_size / elapsed_time))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
if val_size > 0:
print('Validation error: %.1f%%' % error_rate(
eval_in_batches(eval_prediction, eval_data_node, val_data, sess), val_labels))
sys.stdout.flush()
# Save posteriors of training samples
if len(FLAGS.save_prob_to) > 0:
train_probs = eval_in_batches(eval_prediction, eval_data_node, train_data_0, sess)
numpy.save(os.path.join(WORK_DIRECTORY, FLAGS.save_prob_to), train_probs)
if len(FLAGS.save_logit_to) > 0:
train_logits = eval_in_batches(eval_logit, eval_data_node, train_data_0, sess)
numpy.save(os.path.join(WORK_DIRECTORY, FLAGS.save_logit_to), train_logits)
# Finally print the result!
if test_size > 0:
test_probs = eval_in_batches(eval_prediction, eval_data_node, test_data, sess)
if len(label_ranges) == 1:
print('Test error: %.1f%%' % error_rate(test_probs, test_labels))
else:
print('Test error:', end='')
for dataset_idx, label_subset_range in enumerate(label_ranges):
label_begin = sum(label_ranges[:dataset_idx])
label_end = sum(label_ranges[:dataset_idx + 1])
label_mask = (test_labels >= label_begin) * (test_labels < label_end)
print(' %s-%.1f%%' % (dataset_names[dataset_idx], error_rate(
test_probs[label_mask, label_begin:label_end], test_labels[label_mask] - label_begin)), end='')
print(' overall-%.1f%%' % error_rate(test_probs, test_labels))
# Save model
if len(FLAGS.save_model_to) != 0:
save_path = saver.save(sess, os.path.join(WORK_DIRECTORY, FLAGS.save_model_to))
print("Model saved in file: %s" % save_path)
if __name__ == '__main__':
tf.app.run()