-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathcnn_cifar.m
165 lines (142 loc) · 5.62 KB
/
cnn_cifar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
function [net, info] = cnn_cifar(n, varargin)
opts.modelType = 'plain' ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.expDir = fullfile('exp', ...
sprintf('cifar-%s-%d', opts.modelType,n)) ;
opts.dataDir = fullfile('data','cifar') ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.imdbPath = fullfile(opts.dataDir, 'imdb.mat');
opts.bn = true;
opts.whitenData = true;
opts.contrastNormalization = true;
opts.meanType = 'image'; % 'pixel' | 'image'
opts.border = [4 4 4 4]; % tblr
opts.gpus = [];
opts.checkpointFn = [];
opts = vl_argparse(opts, varargin) ;
if numel(opts.border)~=4,
assert(numel(opts.border)==1);
opts.border = ones(1,4) * opts.border;
end
% -------------------------------------------------------------------------
% Prepare model and data
% -------------------------------------------------------------------------
net = cnn_cifar_init(n, 'networkType', opts.modelType, ...
'batchNormalization', opts.bn) ;
if exist(opts.imdbPath, 'file')
imdb = load(opts.imdbPath) ;
if ~strcmpi(imdb.meta.meanType, opts.meanType) ...
|| xor(imdb.meta.whitenData, opts.whitenData) ...
|| xor(imdb.meta.contrastNormalization, opts.contrastNormalization);
clear imdb;
end
end
if ~exist('imdb', 'var'),
imdb = getCifarImdb(opts) ;
mkdir(opts.expDir) ;
save(opts.imdbPath, '-struct', 'imdb') ;
end
net.meta.classes.name = imdb.meta.classes(:)' ;
net.meta.dataMean = imdb.meta.dataMean;
augData = zeros(size(imdb.images.data) + [sum(opts.border(1:2)) ...
sum(opts.border(3:4)) 0 0], 'like', imdb.images.data);
augData(opts.border(1)+1:end-opts.border(2), ...
opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.data;
imdb.images.augData = augData;
% -------------------------------------------------------------------------
% Train
% -------------------------------------------------------------------------
trainfn = @cnn_train_dag;
[net, info] = trainfn(net, imdb, getBatch(opts), ...
'expDir', opts.expDir, ...
net.meta.trainOpts, ...
'gpus', opts.gpus, ...
'val', find(imdb.images.set == 3), ...
'derOutputs', {'loss', 1}, ...
'checkpointFn', opts.checkpointFn) ;
% -------------------------------------------------------------------------
function fn = getBatch(opts)
% -------------------------------------------------------------------------
bopts = struct('numGpus', numel(opts.gpus)) ;
fn = @(x,y) getDagNNBatch(bopts,x,y) ;
% -------------------------------------------------------------------------
function inputs = getDagNNBatch(opts, imdb, batch)
% -------------------------------------------------------------------------
if imdb.images.set(batch(1))==1, % training
sz0 = size(imdb.images.augData);
sz = size(imdb.images.data);
loc = [randi(sz0(1)-sz(1)+1) randi(sz0(2)-sz(2)+1)];
images = imdb.images.augData(loc(1):loc(1)+sz(1)-1, ...
loc(2):loc(2)+sz(2)-1, :, batch);
else % validating / testing
images = imdb.images.data(:,:,:,batch);
end
labels = imdb.images.labels(1,batch) ;
if rand > 0.5, images=fliplr(images) ; end
if opts.numGpus > 0
images = gpuArray(images) ;
end
inputs = {'image', images, 'label', labels} ;
% -------------------------------------------------------------------------
function imdb = getCifarImdb(opts)
% -------------------------------------------------------------------------
% Preapre the imdb structure, returns image data with mean image subtracted
unpackPath = fullfile(opts.dataDir, 'cifar-10-batches-mat');
files = [arrayfun(@(n) sprintf('data_batch_%d.mat', n), 1:5, 'UniformOutput', false) ...
{'test_batch.mat'}];
files = cellfun(@(fn) fullfile(unpackPath, fn), files, 'UniformOutput', false);
file_set = uint8([ones(1, 5), 3]);
if any(cellfun(@(fn) ~exist(fn, 'file'), files))
url = 'http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz' ;
fprintf('downloading %s\n', url) ;
untar(url, opts.dataDir) ;
end
data = cell(1, numel(files));
labels = cell(1, numel(files));
sets = cell(1, numel(files));
for fi = 1:numel(files)
fd = load(files{fi}) ;
data{fi} = permute(reshape(fd.data',32,32,3,[]),[2 1 3 4]) ;
labels{fi} = fd.labels' + 1; % Index from 1
sets{fi} = repmat(file_set(fi), size(labels{fi}));
end
set = cat(2, sets{:});
data = single(cat(4, data{:}));
% remove mean
dataMean = mean(data(:,:,:,set == 1), 4);
if strcmpi(opts.meanType, 'pixel'),
dataMean = mean(mean(dataMean, 1), 2);
elseif ~strcmpi(opts.meanType, 'image'),
error('Unknown option: %s', opts.meanType);
end
data = bsxfun(@minus, data, dataMean);
% normalize by image mean and std as suggested in `An Analysis of
% Single-Layer Networks in Unsupervised Feature Learning` Adam
% Coates, Honglak Lee, Andrew Y. Ng
if opts.contrastNormalization
z = reshape(data,[],60000) ;
z = bsxfun(@minus, z, mean(z,1)) ;
n = std(z,0,1) ;
z = bsxfun(@times, z, mean(n) ./ max(n, 40)) ;
data = reshape(z, 32, 32, 3, []) ;
end
if opts.whitenData
z = reshape(data,[],60000) ;
W = z(:,set == 1)*z(:,set == 1)'/60000 ;
[V,D] = eig(W) ;
% the scale is selected to approximately preserve the norm of W
d2 = diag(D) ;
en = sqrt(mean(d2)) ;
z = V*diag(en./max(sqrt(d2), 10))*V'*z ;
data = reshape(z, 32, 32, 3, []) ;
end
clNames = load(fullfile(unpackPath, 'batches.meta.mat'));
imdb.images.data = data ;
imdb.images.labels = single(cat(2, labels{:})) ;
imdb.images.set = set;
imdb.meta.sets = {'train', 'val', 'test'} ;
imdb.meta.classes = clNames.label_names;
imdb.meta.dataMean = dataMean;
imdb.meta.meanType = opts.meanType;
imdb.meta.whitenData = opts.whitenData;
imdb.meta.contrastNormalization = opts.contrastNormalization;